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Very weakly bound electron-ion pairs in a strong magnetic field are called guiding center drift
atoms, since the electron dynamics can be treated by guiding center drift theory. Over a wide range
of weak binding, the coupled electron-ion dynamics for these systems is integrable. This paper
discusses the dynamics, including the important cross magnetic field motion of an atom as a whole,
in terms of the system constants of the motion. Since the dynamics is quasi-classical, quantum
numbers are assigned using the Bohr–Sommerfeld rules. Antimatter versions of these guiding center
drift atoms likely have been produced in recent experiments. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1646158#

I. INTRODUCTION

This paper discusses the motion of a quasi-classical,
weakly bound electron-ion pair in a strong magnetic field.
The field is sufficiently strong that the electron cyclotron
frequency is the largest of the dynamical frequencies and the
cyclotron radius is the smallest of the length scales. In this
limit, the rapid cyclotron motion can be averaged out, and
the electron dynamics treated with guiding center drift
theory. These weakly bound and strongly magnetized pairs
are called guiding center drift atoms.1

Figure 1 shows a picture of the motion in a simple limit.
The guiding center electron oscillates back and forth along
the magnetic field in the Coulomb well of the ion, and more
slowly EW 3BW drifts around the ion. Letz5ze2zi be the sepa-
ration of the electron and ion along the direction of the mag-
netic field and r 5A(xe2xi)

21(ye2yi)
2 the separation

transverse to the field. For the case where the amplitude of
the field aligned oscillations is not too large~i.e., zmax&r),
the frequency of field aligned oscillations is approximately
vz5Ae2/(mer

3) and the frequency of theEW 3BW drift rota-
tion is approximatelyvD5vD /r 5ce/(Br3). These two fre-
quencies are related to the electron cyclotron frequency,
Vce5eB/mec through the equationVce5vz

2/vD . Thus, the
requirement that the cyclotron frequency be larger than the
other two frequencies imposes the ordering:

Vce@vz@vD . ~1!

The ordering is realized for sufficiently large separation
~weak binding!, that is, for r @r 15(mec

2/B2)1/3. This in-
equality is required for validity of our analysis.

Note that the the inequality implies not only that that the
electron cyclotron frequency is large, but also that the elec-
tron cyclotron radius is small. We have in mind cases where
the electron kinetic energy is smaller than or of order of the

electrostatic binding energy~i.e., meve
2/2&e2/r ). The in-

equality r @r 1 then implies thatr ce[ve /Vce!r .
For r comparable tor 1 our guiding center analysis fails.

All three frequencies in Eq.~1! are comparable, and the elec-
tron motion is chaotic.2 For r !r 1 , the cyclotron frequency is
small compared to the Kepler frequency, and the electron
motion is again integrable. In this case, one can think of the
weakly bound pair as a high-n Rydberg atom with a Zeeman
perturbation.3

The type of motion shown in Fig. 1, where the electron

EW 3BW drifts around the ion, occurs whenvD.Vci , v i /r .
Here,Vci is the ion cyclotron frequency andv i is the initial
velocity of the ion transverse to the magnetic field. For this
type of motion, the pair drifts across magnetic field with the
transverse ion velocityvW i much like a neutral atom.

However, if the ion velocity is too large~i.e., v i /r
@vD), the EW 3BW drifting electron cannot keep up with the
ion. The ion runs off and leaves the electron, which is effec-
tively pinned to the magnetic field. More precisely, the ion
moves in a large cyclotron orbit near the electron, the cyclo-
tron motion being modified by electrostatic attraction to the
electron. Of course, the electron oscillations back and forth
along the magnetic field can become unbounded during large
transverse excursions.

Figure 2 shows a kind of motion that can occur for rela-
tively weak binding @i.e., Vci.vD , or r .r 2

5(mi /me)
1/3r 1]. The electronEW 3BW drifts in the field of the

ion, and the ionEW 3BW drifts in the field of the electron.
Together they form a so-called ‘‘drifting pair.’’ In a drifting
pair, the electron and ion move together across the magnetic
field with the speedvD5ce/Br2.

The main purpose of this paper is to determine the char-
acter of the coupled electron-ion motion as a function of the
constants of the motion. Fortunately, the Hamiltonian dy-
namics for the coupled system is integrable over a wide
range of weak binding. The electron-ion system has six de-
grees of freedom so six constants of the motion are required
for integrability. Four are exact constants: the Hamiltonian
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and the three components of total momentum. The remaining
two are approximate constants~adiabatic invariants! that re-
sult from two frequency separations. Because the electron
cyclotron frequency is much larger than other dynamical fre-
quencies the cyclotron action is a good adiabatic invariant.
Use of guiding center drift variables automatically takes this
constant into account and removes the cyclotron motion
from the problem. Because the frequency of field aligned
oscillations,vz , is much larger than the remaining dynami-
cal frequencies~associated with cross field motion! the ac-
tion associated with the field aligned motion is a good adia-
batic invariant.

Inequality ~1!, which follows from the weak binding
condition r @r 15(mec

2/B2)1/3, guarantees that the charac-
teristic electron frequencies are ordered in accord with the
assumed frequency separations. The frequencies that charac-
terize the cross field ion motion~i.e., Vci and v i /r ) also
must be small compared tovz . The full frequency ordering
is then

Vce@vz@vD ,Vci ,v i /r . ~2!

The relative size ofvD , Vci , andv i /r need not be speci-
fied; indeed, it is interplay between these frequencies that
gives rise to the different types of motion discussed above.
We will return to a detailed discussion of the frequency or-
dering later~see Sec. IV!.

The analysis is carried out in a reference frame where
the electric field vanishes. However, the effect of a uniform
electric field directed transverse to the magnetic field can be
included simply by shifting the transverse ion velocity@i.e.,

vW i(0)→vW i(0)2cEW 3BW /B2].
Antimatter versions of these guiding center drift atoms

have likely been realized in recent experiments at the Euro-
pean Organization for Nuclear Research~CERN!. The
ATHENA4 and ATRAP5 collaborations have both reported
success in producing cold antihydrogen atoms. The ATRAP
collaboration measured binding energies of order meV,

which corresponds toē2 p̄ separation of order 1024 cm.6

The magnetic field strength is 5 T, so the critical radius is
r 1[(mec

2/B2)1/35731026 cm. Thus, the separation is
much larger thanr 1 , and the weakly bound pairs are guiding
center atoms. The cyclotron frequency for the positron is

about 100 times larger than theEW 3BW drift frequencyvD ,
and the cyclotron radius is about 100 times smaller than the
separation. The ATHENA group did not measure binding en-
ergies, but the theory of three-body recombination, expected
to be the dominant recombination process, suggests binding
energies in the same range as those for ATRAP.

There has been much previous work on the coupled
electron-ion system in a strong magnetic field. A difficulty is
that a true separation of the center of mass motion~trans-
verse to the magnetic field! and the internal motion is not
possible. However, Avron, Herbst, and Simon7 found an ef-
fective separation by introducing the transverse pseudomo-
mentum and showing that it is a constant of motion. The
influence of the transverse center of mass motion on the in-
ternal motion is then accounted for by a pseudopotential that
depends on the eigenvalue of the pseudomomentum. More
recently this effective separation was applied to the hydrogen
atom8 and positronium.9

In our classical analysis, the transverse pseudomomenta
(PX ,PY) arise as two new momenta in a canonical transfor-
mation, and the pseudopotential enters the transformed
Hamiltonian. Our analysis differs from the previous work in
that the Hamiltonian is simplified by the use of frequency
ordering~2!, which relies on both strong magnetic field and
weak binding. Introduction of the cyclotron action and of the
action for the field aligned bounce motion effectively aver-
ages the Hamiltonian over the rapid cyclotron and bounce
motions, removing two degrees of freedom at the outset. In
the language of atomic physics, a double Born–
Oppenheimer approximation is used. The remaining trans-
verse dynamics is always integrable, and a transverse action
can be introduced. Since the Hamiltonian is expressed as a
function of the cyclotron action, bounce action, and trans-
verse action, a general expression for the quantum energy
levels can be obtained using the Bohr–Sommerfeld quanti-
zation rules. Of course the assumption of weak binding jus-
tifies the quasi-classical approximation—with the possible
exception of the cyclotron motion, as will be discussed. We
will compare general quasi-classical predictions for energy
levels to predictions from quantum calculations in limiting
cases.

Much of the previous work has focused on an ‘‘outer
well’’ that exists in the pseudopotential for sufficiently large
pseudomomentum and the consequent ‘‘delocalized atomic
states.’’7,8 From the prospective of guiding center drift
theory, these delocalized states are simply an electron and
ion EW 3BW drifting in each other’s field as shown in Fig. 2.
The criterion for the existence of the outer well in the exact
pseudopotential is that the scaled pseudomomentum be
larger than a certain value,P̃> P̃c53/41/3.8 The reader may
wish to skip ahead to Eq.~18! for the definition ofP̃. This is
a necessary criterion for the existance of the delocalized
states. Working with the bounce averaged pseudopotential,

FIG. 1. Drawing of guiding center atom. In order of descending frequency,
electron executes cyclotron motion, oscillates back and forth along a field
line in the Coulomb well of the ion,EW 3BW drifts around the ion.

FIG. 2. A kind of motion that occurs when electron and ion form a drifting
pair.
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we find a necessary and sufficient criterion for the delocal-
ized states,P̃. P̃( Ĩ z), where Ĩ z is the scaled bounce action.
As we will see,P̃c( Ĩ z) reduces toP̃c53/41/3 for Ĩ z50.

The name ‘‘guiding center drift atom’’ was coined in
Ref. 1. Indeed, a version of Fig. 1 appears in Ref. 1. Like-
wise, the possibility of ‘‘E3B drifting pairs’’ and ‘‘runaway
ions’’ was discussed. However, Ref. 1 did not exploit the
integrability of the Hamiltonian to discuss the atom dynam-
ics as a function of the constants of the motion, which is the
principle focus of this paper. Rather, anticipating the pro-
grams to produce antihydrogen,4,5 Ref. 1 extended the theory
of three-body recombination to the case of guiding center
drift atoms. The theory treated the simple case where the ion
~or antiproton! is stationary. The general characterization of
atom dynamics developed here is a prerequisite to an analy-
sis of three-body recombination that takes into account ion
motion.

II. HAMILTONIAN AND CONSTANTS OF MOTION

We consider a uniform magnetic fieldBW 5 ẑB repre-
sented by the vector potentialAW 5Bxŷ. The external electric
field is chosen to be zero. The Hamiltonian for a guiding
center drift electron and an ion that interact electrostatically
and move in the magnetic field is given by

H5I ceVce1
1

2me
pze

2 1
1

2mi
pxi

2

1
1

2mi
S pyi

2 2
e

c
Bxi D 2

1
1

2mi
pzi

2

2
e2

AS xi1
c

eB
pyeD 2

1~yi2ye!
21~zi2ze!

2

. ~3!

Here, the first two terms are the electron kinetic energy,
whereVce is the cyclotron frequency andI ce is the cyclotron
action. The product is the kinetic energy associated with ve-
locity components transverse to the magnetic field. SinceI ce

is a good adiabatic invariant andVce is constant~for a uni-
form magnetic field!, the productI ceVce is constant and does
not influence the dynamics of the remaining variables. The
quantitiesxi , yi , zi , ye , andze are ion and electron coor-
dinates; and the momenta conjugate to these coordinates are
given by

pxi5miẋi ,

pyi5miẏi1
eB

c
xi ,

pzi5miżi , ~4!

pye52
eB

c
xe ,

pze5meże .

The electron position transverse to the field is specified by
(ye ,pye52eBxe /c), andxe ,pxe5meẋe are removed from

the dynamics. The removal of one degree of freedom results
from averaging out the rapid cyclotron motion.

Let us make a canonical transformation to a new set of
variables

PX5pxi1
eB

c
~ye2yi !, X5

c

eB
~pyi1pye!1xi ,

PY5pyi1pye , Y5
c

eB
pxi1ye ,

PZ5pzi1pze, Z5
mizi1meze

mi1me
, ~5!

py5
eB

c
xi1pye , y5ye2yi ,

pz5
mipze2mepzi

mi1me
, z5ze2zi .

To verify that the transformation is canonical, one can check
that Poisson brackets are equal to unity for conjugate vari-
ables and vanish otherwise. The Hamiltonian in the new vari-
ables has the form

H5I ceVce1
1

2mi
S PX2

eB

c
yD 2

1
1

2mi

~PY2py!2

1
1

2M
PZ

21
1

2m
pz

22
e2

AS c

eB
pyD 2

1y21z2

, ~6!

whereM5mi1me , and m5mime /(mi1me) are total and
reduced mass, respectively. Since the mass ratio is assumed
to be small (me /mi!1), we setM.mi and m.me in the
subsequent analysis. The Hamiltonian is independent oft, X,
Y, andZ, so H, PX , PY , andPZ are constants of the mo-
tion. We work in a frame wherePZ is zero ~the center of
mass frame!, and we orient the coordinates axis so thatPX is
zero. This involves no loss of generality. In the Hamiltonian,
the sum of the two terms that govern thez motion are the
binding energy

Hz5
1

2m
pz

22
e2

Ar 21z2
, ~7!

where

rW5S 2
c

eB
py , y, 0D[~xe2xi , ye2yi , 0!. ~8!

The electron kinetic energy associated with velocity compo-
nents transverse to the magnetic field is bound up in the
cyclotron action,I ce . For a bound electron-ion pair,Hz is
negative.

In previous work7–9 the momentumPW 5(PX ,PY) is
called the pseudomomentum. Likewise, the second two
terms in Hamiltonian~6!, which are the transverse kinetic
energy of the ion, are thought of as a pseudopotential for the
transverse internal motion@i.e., for (y,py)].

One further constant is required for integrability, and it is
given by the bounce action for thez motion,
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I z5
1

2p R pzdz5eAmr FS 2Hzr

e2 D , ~9!

which is a good adiabatic invariant for sufficiently large
bounce frequency. In carrying out the integral,Hz and r are
held constant. The functionF~j! is given by

F~j!5
2&

pAj
E

j

1A q2q2

q22j2 dq

5
2&

pjA11j
F2j~j11!ES j21

j11D
1jKS j21

j11D1PS j21

j
,
j21

j11D G , ~10!

whereE, K, andP are the complete elliptic integrals and the
argument ofF is j52Hzr /e2. For future reference we note
that j5r /Azmax

2 1r2, wherezmax is the amplitude of the field
aligned oscillations. Figure 3 shows a plot ofF~j! on the
interval @0,1#. The figure also shows a graphical inversion to
obtainHz as a function ofI z and r . Formally, we write the
inversion as

Hz~r ,I z!52
e2

r
F21S I z

eAmer
D . ~11!

Whenj52Hzr /e2 is close to 1, the amplitude of axial
electron oscillations in the Coulomb well is small compared
to r , and the potential is approximately harmonic. In this
caseF~j! can be approximated by linear dependence:

F~j!.12j, ~12!

andHz and I z are related as

Hz~r ,I z!.2
e2

r
1I zvz , ~13!

wherevz
25e2/(mr 3). As one expects, the Coulomb potential

energy,2e2/r , is corrected by the addition of a small term
I zvz , the oscillation energy in a harmonic well.

Analytic treatment also is possible when the amplitude
of oscillation is near the limit allowed by binding~i.e.,
j52Hzr /e2!1). One can approximate the functionF~j!
with an asymptotic series

F~j!.A2

j
2

4&

p
@E~21!2K~21!#2¯ . ~14!

Using the first two terms in this series yields the approximate
expression

Hz~r ,I z!.2
2me4

S I z1
4

p
@E~21!2K~21!#eA2mr D 2 .

~15!

We can see from~15! that for finite bounce oscillations (I z

Þ0), the electron binding energyHz has the minimum pos-
sible valueHz522me4/I z

2 . If the electron-ion transverse
separation were slowly reduced, the binding energy would
not go to minus infinity. Note that expression~15! is only
valid for I z such thatI z@eAmr .

Substituting Eqs.~7! and ~11! plus the choicesPX5PZ

50 into Hamiltonian~6! yields an implicit equation for the
phase space trajectory@i.e., for py(y)],

H5I ceVce1
1

2
miVciy

21
1

2mi
~PY2py!2

2
e2

r
F21S I z

eAmer
D , ~16!

wherer is related toy andpy through Eq.~8!. The trajectory
is specified by the values ofH, P, and I z . With the addi-
tional input of an initial point along the trajectory@e.g.,y(t
50) or py(t50)], theHamiltonian equations of motion can
be solved to findy(t) and py(t). Given this solution, the
coordinates of the electron and ion are determined separately
by

dxi

dt
52

eB

mic
y~ t !,

dyi

dt
5

PY

mi
2

py~ t !

mi
,

~17!
dpye

dt
52

]Hz~r ,I z!

]y
,

dye

dt
5

]Hz~r ,I z!

]py
.

These equations follow from Eqs.~4! and~5! and the choice
PX50.

III. PHASE TRAJECTORIES IN SCALED VARIABLES

The dependence of the phase trajectories on parameters
such ase and B can be buried in scaled variables. Using
r 25(mic

2/B2)1/35(mi /me)
1/3r 1 , Vci

21, andmi as the units
of length, time, and mass yields the scaled variables

P̃5PY /~miVcir 2!,

ỹ5y/r 2 ,

p̃y5py /~miVcir 2!,

H̃5H/~miVci
2 r 2

2!, ~18!

H̃z5Hz /~miVci
2 r 2

2!,

Ĩ z5I z /~miVcir 2
2!,

FIG. 3. Graphical solution of Eq.~9!. Knowing I z and r , one can find
Hz(r ,I z).
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Ĩ ce5I ce /~miVcir 2
2!,

and the scaled Hamiltonian

H̃5
mi

me
Ĩ ce1

1

2
~ P̃2 p̃y!21

1

2
ỹ22

1

r̃
F21SAmi

me

Ĩ z

Ar̃
D ,

~19!

where ther̃ 5 x̃21 ỹ2 and x̃52 p̃y . Likewise, Eq.~17! takes
the scaled form

dx̃i

d t̃
52 ỹ~ t̃ !,

dỹi

d t̃
5 P̃2 p̃y~ t̃ !,

~20!
dp̃ye

d t̃
52

]H̃z

] ỹ
,

dỹe

d t̃
5

]H̃z

] p̃y

,

whereH̃z is the last term in Hamiltonian~19! and the scaled
time is t̃ 5tVci .

We have in mind cases where the scaled variablesP̃, ỹ,
andp̃y52 x̃ are all of order unity, butĨ z is of orderAme /mi .
The productAmi /meĨ z , which enters the last term is then of
order unity. In the following discussion of trajectories we
will specify the value of the productAmi /meĨ z . The signifi-
cance of the factorAmi /me will be apparent in the next
section where we evaluate frequencies as derivatives ofH̃
with respect to actions.

For the simple caseAmi /meĨ z50, Hamiltonian~19! re-
duces to the form

H̃5
1

2
~ P̃2 p̃y!21

1

2
ỹ22

1

Ap̃y
21 ỹ2

, ~21!

where the constant term (mi /me) Ĩ ce has been dropped.
Phase trajectories in this case depend only on two param-
eters,H̃ and P̃. Depending on the value ofP̃ there can be
different types of phase portraits. Three different cases are
presented in Figs. 4–6.

Figure 4~a! shows the phase trajectories for the case
where P̃52.5 is greater than a certain critical value,P̃c

53/41/3. Figure 4~b! shows a plot ofH̃( ỹ50,p̃y ,P̃). One
can see thatH̃ has two minima, one at (ỹ,p̃y)5(0,0) ~where
H̃→2`), and another atỹ50 and finitep̃y .

There are three classes of trajectories divided by the
separatrix shown as the dashed curve in Fig. 4~a!. For the
first class, the trajectories encircle the minimum at (ỹ,p̃y)
5(0,0). For the second class, the trajectories encircle the
minimum atỹ50 and finitep̃y . For the third class, the tra-
jectories encircle both minima. We will now describe the
prototypical motion for each class in an extreme limit where
the motion is simple. Of course, for a trajectory not near one
of these limits, say, a trajectory near the separatrix dividing
two classes, the motion is a complicated mix of the two
limits.

For the trajectories encircling the minimum at (ỹ,p̃y)
5(0,0) with small r̃ 5Aỹ21 p̃y

2, the electronEW 3BW drifts
around the ion as shown in Fig. 1. This kind of motion re-

quires the electronEW 3BW drift velocity to be large compared
to the ion velocity. From Eq.~20!, we see that forr̃ !1 and
P̃ order unity or larger, the ion velocity is approximatelyṽ i

[A(dx̃i /d t̃)21(dỹi /d t̃)2. P̃ and the velocity ṽe

[A(dỹe /d t̃)21(dp̃ye /d t̃)2.1/r̃ 2. Thus, the ratio

ṽ i

ṽe
. P̃r̃ 2 ~22!

is small for sufficiently smallr̃ . The bound electron-ion pair
moves across the magnetic field with a velocity that is nearly
equal to the initial ion velocity,

K dx̃i

d t̃
L 52^ ỹ&50,

~23!K dỹi

d t̃
L 5 P̃2^ p̃y&. P̃.

vyi~0!

r 2Vci

.

Here, the angular brackets indicate an average over the rapid
EW 3BW drift motion of the electron.

FIG. 4. ~a! Phase trajectories for the case whenĨ z50, P̃52.5. P̃c ; ~b!

section ofH̃( p̃y ,ỹ,P̃) over the planeỹ50.
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For the trajectories that encircle the second minimum
tightly, the electron and ionEW 3BW drift together as shown in
Fig. 2. According to Eq.~20! the electron and ion velocities
are given by

dỹe

d t̃
.

p̃ym

u p̃ymu3
,

dỹi

d t̃
. P̃2 p̃ym , ~24!

wherep̃ym is the location of the minimum. Note thatdx̃i /d t̃

anddp̃ye /d t̃ are both nearly zero. The minimum is the root
of

05
dH̃

dp̃y
52~ P̃2 p̃y!1

p̃y

u p̃yu3 , ~25!

so the electron and ion velocities are equal, both given by the
EW 3BW formula.

For the large circular trajectories~i.e., r̃ @1), the ion
executes a cyclotron orbit in the vicinity of the electron. The
electronEW 3BW drift velocity is small compared to the ion
velocity for these larger̃ trajectories.

If the value of the transverse momentumP̃ is decreased,
the minimum atỹ50 and finitep̃y disappears. Figures 5~a!

and 5~b! show the the trajectories and Hamiltonian for the
critical value P̃c53/41/3. Figures 6~a! and 6~b! show the
same for a sub-critical value,P̃51.5, P̃c . One can see that
EW 3BW drifting pairs @see Fig. 2# are no longer possible.

For the general case whereAmi /meĨ zÞ0, Hamiltonian
~19! must be used to plot the trajectories. An important dif-
ference is that the binding energy

H̃z52
1

r̃
F21SAmi

me

Ĩ z

Ar̃
D ~26!

does not diverge atr̃ 50 whenAmi /meĨ z is non-zero. This is
to be expected since the potential21/Az̃21 r̃ 2 does not di-
verge at r̃ 50 for finite z̃. As mentioned earlier@see Eq.
~15!#, H̃z reaches the minimum value22/(Ami /meĨ z)

2 as r̃

approaches zero. Plots ofH̃z vs r̃ for various values of
Ami /meĨ z are shown in Fig. 7.

The phase trajectories for non-zeroAmi /meĨ z are quali-
tatively like those shown in Figs. 4–6. However, the critical
value of P̃, signifying the loss of the separatrix, is a slowly
decreasing function ofAmi /meĨ z . Figure 8 shows a plot of
P̃c(Ami /meĨ z) for Ami /meĨ z ranging from 0 to 1. As illus-

FIG. 5. Same as in Fig. 4 butP̃53/41/35 P̃c . FIG. 6. Same as in Fig. 4 butP̃51.5, P̃c .
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trations, Figs. 9 and 10 show phase space trajectories for the
same values ofP̃ @i.e., P̃51.5] but for different values of
Ami /meĨ z ~i.e., Ami /meĨ z50.3 and Ami /meĨ z50.9). In
Fig. 9 there is no separatrix, sinceP̃51.5 is below the criti-
cal value P̃c(Ami /meĨ z50.3).1.64; whereas in Fig. 10
there is a separatrix, sinceP̃51.5 is above the critical value
P̃c(Ami /meĨ z50.9).1.15.

IV. FREQUENCY SEPARATION AND THE ADIABATIC
INVARIANTS

In this section, we examine the frequency separation re-
quired for validity of the adiabatic invariants. For a case
where the separation is well satisfied, we will see that a
solution of the full equations of motion, including the elec-
tron cyclotron motion, compares well to the corresponding
trajectory obtained using constancy of the adiabatic invari-
ants. For a case where the separation is not satisfied, the
numerical solution of the full equations of motion exhibits
breakdown of the adiabatic invariants and apparent chaotic
motion.

The frequency separation can be understood as a conse-
quence of the large mass ratiomi /me@1. In Hamiltonian
~19!, suppose that the cross field scaled variables are all of
order unity @i.e., P̃, ỹ, p̃y;O(1)] and that Ami /meĨ z ,

(mi /me) Ĩ c;O(1). The scale cyclotron frequency is
]H̃/] Ĩ c5mi /me , the scaled frequency of field aligned oscil-
lations is ]H̃/] Ĩ z;O(Ami /me) and the scaled cross field
frequencies are of order unity. Thus, the three classes of fre-
quencies in inequality~2! are ordered asmi /me@Ami /me

@1.
Let us look at the field aligned oscillations more closely.

For arbitraryj5 r̃ /Ar̃ 21 z̃max
2 , the scaled frequency is given

by

]H̃z

] Ĩ z

5Ami

me

1

r̃ 3/2

1

2F8~j!
5Ami

me
S j

r̃
D 3/2

Q~j!, ~27!

FIG. 8. Plot ofP̃c( Ĩ z).

FIG. 9. Phase portrait of the system for the case whenP̃51.5, Ami /meĨ z

50.3; the radius of dashed circle in the center is equal tor̃ 15r 1 /r 2 .

FIG. 10. Phase portrait of the system for the case whenP̃51.5,
Ami /meĨ z50.9; the radius of dashed circle in the center is equal tor̃ 1 .

FIG. 7. Plot of binding energyH̃z at different values ofAmi /meĨ z . ~1!

Ami /meĨ z50 ~in this case H̃z521/r̃ ); ~2! Ami /meĨ z50.3; ~3!

Ami /meĨ z50.6; ~4! Ami /meĨ z50.9.
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where the functionQ~j! is plotted in Fig. 11. SinceQ~j! is
unity to within a factor of& over the full range ofj values
~i.e., 0<j<1), the scaled frequency is approximately

]H̃z

] Ĩ z

.Ami

me
S j

r̃
D 3/2

5Ami

me

1

~ r̃ 21 z̃max
2 !3/4

~28!

for arbitrary z̃max. As expected, the maximum]H̃z /] Ĩ zumax

5Ami /mer̃
23/2, occurs forzmax50.

In Sec. I we required that

]H̃z

] Ĩ c

5
mi

me

@
]H̃z

] Ĩ z

U
max

5Ami

me

1

r̃ 3/2
, ~29!

which can be written as the requirementr @r 2(me /mi)
1/3

5r 1 . Since]H̃z /] Ĩ z is much smaller than]H̃z /] Ĩ zumax for
z̃max@r̃, one might think that requirement~29! is overly re-
strictive. However, there are high frequency components in
the motion that are of order ofAmi /mer̃

23/2. These high
frequency components are associated with the passage of the
electron near the ion~i.e., for z&r ). In unscaled variables,
the high frequency components are of orderve /r , where
meve

2;e2/r , which when scaled is ve /(r 2Vci)
5Ami /mer̃

23/2. Thus, the criterion used in Sec. I is correct
even forz̃max@r̃.

Turning next to the requirement that the cross field mo-
tion be slow compared to the field aligned oscillations, we
note first that the cross field motion affects the field aligned
oscillations only through the time dependence inr 2(t) @see
Eq. ~7!#. Thus, we examine the Poisson bracket

dr̃2

d t̃
5@ r̃ 2,H̃#52ỹ~ t̃ !P̃, ~30!

whereH̃ is the scaled Hamiltonian~19!.
The different trajectories in the figures of Sec. III are

characterized by different time dependencies forỹ( t̃ ). Con-
sider, for example, the three classes of trajectories in Fig.
4~a!. For the trajectories that encircle the minimum value of
H̃ at r̃ 50, ỹ( t̃ ) oscillates at the rotation frequency of the
vector r̃W( t̃ ), which when scaled isvD /Vci51/r̃ 3. Equiva-
lently, from Hamilton’s equations we obtain]H̃/]( r̃ 2/2)
.]/]( r̃ 2/2)(21/r̃ )51/r̃ 3.

Figure 4~a! is plotted for the case wherezmax50 and
H̃z521/r̃ . For a case wherezmax@r, such as the plots in
Fig. 9, one can show that the rotation frequency is approxi-
mately

]H̃z

]~ r̃ 2/2!
.

1

r̃ 3 j3/25
1

r̃ 3/2~zmax
2 1 r̃ 2!3/4. ~31!

For the trajectories in Fig. 4 that encircle the minimum
in H̃ at finite p̃y , the ion and electronEW 3BW drift together, as
shown in Fig. 2, but the ion also executes cyclotron motion
in the drift frame. In unscaled variablesr (t) varies at the
frequencyVci , which corresponds to the scaled frequency
Vci /Vci51. One can easily check this result using the
scaled Hamiltonian directly.

For the trajectories in Fig. 4 that encircle both minima,
the scaled frequency of the motion is approximately
Vci /Vci51, but there can be high frequency components
associated with the close passage of the ion near the electron
~i.e., for small r̃ ). An estimate for the high frequency com-
ponent is

1

r̃ 2

dr̃2

d t̃
5

ỹP̃

r̃ 2
&S v i

r 2Vci
D 1

r̃
&

1

r̃ 3/2
, ~32!

where r̃ is the minimum value of the cross field separation
and we have assumed thatmiv i

2&e2/r . The frequency of
field aligned oscillations given in Eq.~27! must be large
compared to the cross field frequencies, so we obtain the
requirement

Ami

me

1

~ r̃ 21 z̃2!3/4@
1

r̃ 3/2~ r̃ 21 z̃2!3/4,1,
1

r̃ 3/2. ~33!

The first term on the right is small compared to the term on
the left provided thatr̃ @(me /mi)

1/3, which is the same as
inequality~29!. This inequality~i.e., r @r 2(me /mi)

1/35r 1) is
the basic requirement that the the binding be sufficiently
weak.

The second term on the right is small compared to the
term on the left provided that the binding is not too weak
@i.e., (r̃ 21 z̃2)1/2!(mi /me)

1/3]. Thus, the allowed electron-
ion separations are bounded below and above@i.e.,
(me /mi)

1/3! r̃ , ( r̃ 21 z̃2)1/2!(mi /me)
1/3]. Even for an elec-

tron and proton, the ratio of the upper to the lower bound is
large, (mi /me)

2/3.150. Finally, the third term on the right is
small compared to the term on the left provided the atom is
not too elongated@i.e., z̃max/r̃!(mi /me)

1/3]. For applications
such as to the weakly bound pairs in the ATRAP and ATH-
ENA experiments the lower bound@i.e., (me /mi)

1/3, r̃ ] is
the constraint of primary concern.

As examples, we now examine numerical solutions of
the full equations of motion for a case where the lower
bound constraint is satisfied and a case where it is not satis-
fied. In Fig. 9, the dashed circle indicates the lower bound
@i.e., r̃ 5(me /mi)

1/3.0.082] for the case of electron-proton
mass ratio. The upper bound is well outside the domain of
the figure. The adiabatic invariants should be conserved for
trajectories that lie completely outside the dashed circle.

FIG. 11. Plot of functionQ~j!.
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Figure 12 shows a trajectory obtained by numerically
solving the full equations of motion, including the cyclotron
andz-bounce motion. As expected for a case where the ac-
tions are good invariants, the trajectory differs only slightly
from the corresponding trajectory in Fig. 9. The small ripples
on the trajectory in Fig. 12 are caused by the change in the
drift velocity as the electron oscillates back and forth inz.
Smaller and higher frequency oscillations caused by the
electron-cyclotron motion are not visible in the figure.

In Fig. 10, the dashed circle again is drawn to indicate
the lower bound,r̃ 5(me /mi)

1/3. Figure 13 shows the result
of a numerical solution of the full equations of motion for a
trajectory that starts at (p̃y ,ỹ)5(0.26,0) and has values of
Ami /meĨ z and P̃Y corresponding to Fig. 10. For this trajec-
tory zmax/r;O(5–10) is rather large. The periodic helical
excursions on the trajectory occur when the electron is near a
turning point for the field aligned oscillations. The electron
cyclotron motion combines with the slow ion velocity to
produce the helical excursion. When the field aligned oscil-
lation brings the electron near the ion again, the transverse
electric field rises dramatically, and the electron steps to the
next helical excursion. The combination of the excursions
and the periodic electron steps produce a trajectory that
loosely follows the trajectory in Fig. 10. However, the rapid

rise and fall of the transverse electric field breaks the adia-
batic invariants, mixing axial and transverse kinetic energies.
One can see in Fig. 10 that the size of the cyclotron radius
varies from excursion to excursion gradually increasing.

V. BOHR–SOMMERFELD QUANTIZATION

Since the motion is quasiclassical, we introduce quantum
numbers by using the Bohr–Sommerfeld rule, that is by
quantizing the actions. Hamiltonian~16! includes the the cy-
clotron action and the action for field aligned oscillations,
but the action for the cross field drift motion must still be
introduced.

This action is obtained by solving Eq.~16! for py

5py(H2I ceVce,PY ,I z ,y) and evaluating the integral

I D5
1

2p R py~H2I ceVce ,PY ,I z ,y!dy ~34!

over a contour of constantH. I D is simply 1/~2p! times the
phase space area enclosed by the contour.

The quantization is effected by settingI D5\nD , I z

5\nz , andI ce5\(nc11/2) in Eq.~34!, wherenD , nz , and
nc are integers. The 1/2 is retained in the quantization rule
for the cyclotron motion sincenc may be relatively small. In
principle, Eq.~34! can be inverted to find the system energy
as a function of PY and the quantum numbers:H
5H(PY ,nc ,nz ,nD). the momentumPY is not quantized.

Fortunately, this prescription is easy to carry out in the
most important limit: a guiding center drift atom with rela-
tively tight binding. In this case the drift motion corresponds
to that shown in Fig. 1. Equation~34! then reduces to the
simple form

I D5
1

2p R pydy5
1

2p

eB

c R xdy5
eB

2pc
pr 2, ~35!

wherer is the radius of the nearly circular orbit. Quantizing
the actionI D then yields the allowed radii,

r ~nD!5A2\nDc

eB
. ~36!

Substituting this expression and the quantized values of
I c and I z into Hamiltonian~16! yields the allowed energies

H5
PY

2

2mi
1\VceS nc1

1

2D2
e2

r ~nD!
F21F \nz

eAmer ~nD!
G .

~37!

In writing the kinetic energy for the ion asPY
2/(2mi), use

was made of the fact thatr (nD) is small ~relatively tight
binding!. For the case whereI z also is small @i.e., zmax

!r(nD)], approximations~12! and~13! yield the further sim-
plification

H5
PY

2

2mi
1\VceS nc1

1

2D2
e2

r ~nD!
1\vz@r ~nD!#nz ,

~38!

wherevz(r )5Ae2/(mer
3).

For small changes in the quantum numbers, the change
in the energy is given by

FIG. 12. Numerical solution of the equations of motion for the trajectory

starting at r̃We5(0,0,0), r̃W i5(0.7,0,0), ṽW e5(0,0,239.297), ṽW i

5(0,0.8,0.0213919),mi /me51837; the electron is not treated in drift ap-
proximation~i.e., full dynamics in magnetic field for both particles!.

FIG. 13. Numerical solution of the equations of motion for the trajectory

starting at r̃We5(0,0,0), r̃W i5(0.26,0,0), ṽW e5(0,0,2104.095), ṽW i

5(0,1.24,0.056 666),mi /me51837; the electron is not treated in drift ap-
proximation~i.e., full dynamics in magnetic field for both particles!.
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DH5
]H

]I c
\Dnc1

]H

]I z
\Dnz1

]H

]I D
\DnD , ~39!

where ]H/]I c5Vce , ]H/]I z5vz , and ]H/]I D5vD .
Thus, the energy level spacings for single integer changes in
the quantum numbers (Dnc , Dnz , DnD51) are ordered as
the frequencies@see inequality~1!#. Further, since the ener-
gies associated with the cyclotron motion, field aligned os-
cillations, and Coulomb interaction are comparable, the cor-
responding quantum numbers are ordered inversely to the
frequencies~i.e., nc!nz!nD).

We note that more accurate calculations would find cor-
rections to]H/]I c that are of order]H/]I D5vD . However,
these corrections contribute negligibly to the overall energy
sincenD@nc .

Finally, for a drifting pair with an electron orbit near the
bottom of the outer well@see the small nearly circular orbit
centered at (y50, py.P) in Fig. 4#; the Hamiltonian may
be Taylor expanded about the bottom of the well to obtain

H.VceI ce1vzI z1
1

2

]2H

]y2 y21
1

2

]2H

]py
2 ~py2py

(0)!2,

~40!

where

]2H

]y2 5miVci
2 2

e5B3

c3~py
(0)!3 ,

~41!
]2H

]py
2 5

1

mi
22

e3B2

c~py
(0)!3 ,

and py
(0).P is the bottom of the well. Also, we have taken

the simple case of small axial bounce motion and used Eq.
~13!. In this case, the Bohr–Sommerfeld quantization rules
yield the energy levels

H.\VceS nc1
1

2D1\vznz1A]2H

]y2

]2H

]py
2 \nD . ~42!

For our frequency ordering this expression reproduces results
obtained previously using a quantum treatment for a qua-
dratic aproximation to the outer well.8

VI. FIELD IONIZATION

Thus far, we have considered the case where the external
electric field vanishes in the laboratory frame. As was men-
tioned earlier, the case of a uniform electric field directed
transverse to the magnetic field is included implicitly
through a change of reference frame, that is, a shift in the
initial ion velocities, v¢ i(0)→v¢ i(0)2cEÃB/B2. However,
such a shift cannot account for an electric field that is parallel
to the magnetic field or an electric field that is spatially vary-
ing.

In the ATRAP experiments,6 ionization of the guiding
center drift atoms by an electric field~field ionization! was
used to measure binding energies. For interpretation of such
experiments, it would be useful to know the critical field for
ionization as a function of the quantum numbers~or actions!
for the atomic state.

First consider the case where the electric field is parallel
to the magnetic field and the atom is moving slowly up a
gradient in the field. The binding energy in Eq.~7! is then
replaced by

Hz5
pz

2

2m
2

e2

Ar 21z2
2eEz~ t !z, ~43!

whereEz(t)[E@zatom(t)# is the electric field at the location
of the atom, and we have neglected the variation in the field
over the dimensions of the atom. As the atom moves up the
gradient in the field,Hz is not constant in time. Rather, the
action,

I z~Hz ,Ez ,r !5
1

2p R pz@Hz ,Ez ,r ,z#dz, ~44!

is constant until just before ionization. For simplicity, we
consider tightly bound drift orbits with nearly circular orbits
and neglect variation inr during the ionization process.

The electric field cannot increase indefinitely. At a cer-
tain critical value ofEz(t), one of the turning points for the
integral in Eq.~44! ceases to exist, the adiabatic invariant
fails, and field ionization occurs. Implementing these ideas
numerically yields the solid curve in Fig. 14: a plot of the
scaled critical field,Ez /(Hz

2/e3), versus the scaled radius,
2Hzr /e2. Here,Hz is the initial binding energy, that is, the
binding energy before the atom enters the electric field. Re-
call that Hz is related toI z and r ~or, the drift actionI D

5eBr2/2c) through Eq.~7!. The limit 2Hzr /e251 corre-
sponds toI z50. In this limit, Ez /(Hz

2/e3) reaches the maxi-
mum value 2/3). Although the full curve in Fig. 14 was
obtained numerically, the maximum value can be obtained
analytically. To check this theory, Hamilton’s equations of
motion were integrated forward in time through the field
ionization event for various initial conditions. The results are
shown as the points in Fig. 14. One can see that the theory
based on constancy ofI z is accurate.

The scaling used in Fig. 14 provides a significant sim-
plification. Without the scaling, the critical field would have
to be written as a two-dimensional function,Ez5 f (Hz ,r ).

FIG. 14. Ionization by an electric field parallel to the magnetic field.Ez is
the critical field for ionization,Hz is the initial binding energy before the
atom enters the electric field, andr is the radius of the nearly circular initial
drift orbit. The solid curve results from a theory based on constancy ofI z ,
and the points are solutions of Hamilton’s equations of motion.
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The scaling results from the fact that the Coulomb interac-
tion does not introduce a separate length scale, so all lengths
can be scaled in terms ofe2/Hz .

Next consider the case where an atom moves up a gra-
dient in a transverse electric field. For a sufficiently weak
gradient, the electric field can be treated as uniform over the
dimensions of the atom, but slowly varying in time because
of the motion of the atom. As mentioned, a uniform trans-
verse field can be accounted for by a shift in ion velocity, or
equivalently, a shift in the total transverse momentum

P→Peff5P~ t !2
micE~ t !ÃB

B2 , ~45!

whereE(t) is the electric field at the location of the atom.
We have also allowed for a slow time dependence in the
atom momentum,P(t). The electric field polarizes the atom,
and then the gradient in the field gives rise to a weak force
on the atom and a slow time variation in the atom momen-
tum. We will discuss this point later. Here, we need only
realize thatPeff(t) changes slowly in time because of the
atom motion.

SubstitutingPeff(t) for P in Eq. ~16!, with Px not set
arbitrarily to zero, yields a Hamiltonian for the relative
electron-ion motion,r (t). To understand the field ionization
process, it is useful to refer again to Fig. 4~b!. The peak in
the effective potential separating the Coulomb well and the
outer well moves to the left asuPeff(t)u increases. Correspond-
ingly, in Fig. 4~a! the x point in the separatrix moves to the
left. We imagine that the atom starts with a nearly circular
guiding center drift orbit inside the Coulomb well. As the
atom moves up the gradient in the transverse electric field
and uPeff(t)u increases, thex point moves toward the orbit,
and the orbit distorts from circularity. Eventually, the phase
trajectory crosses the separatrix to the outer well. The atom
becomes a drifting pair and is quickly ionized by the gradi-
ent. One can easily show that drifting pairs are always sepa-
rated by a field gradient. Effectively, field ionization occurs
when the trajectory crosses the separatrix.

During this process, the Hamiltonian is not a constant of
the motion sincePeff(t) depends explicitly on time. However,
the transverse action

I D5
1

2p R py@y,H,I z ,Peff~ t !#dy ~46!

is nearly constant up to the separatrix crossing. The charac-
teristic time for a drift cycle is small compared to the time
scale on whichPeff(t) changes. The constancy of the actions,
I D and I z , allows us to determine the criticaluPeffu for field
ionization as a function of the initial values of the actions.

Figure 15 shows the result of a numerical implementa-
tion of these ideas for the simple case whereI z50. The
abscissa and ordinate are scaled as in Sec. III. The ordinate is
the scaled drift actionĨ D5I D /miVcir 2

25 r̃ 2/2, where r̃
5r /r 2 is the scaled radius of the nearly circular initial drift
orbit. Rather than referring to a critical effective momentum
for ionization, we refer to a critical effective electric field,
Eeff[uPeffÃB/micu. The abscissa in Fig. 15 is the scaled
critical field, Ẽeff5Eeff /(e/r2

2). The critical field is always

larger than the momentum at which the outer well disappears
~i.e., Ẽeff5uP̃effu.P̃c53/41/3, see Fig. 5!. The solid curve in
Fig. 15 results from the theory based on constancy of the
adiabatic invariants, and the points are from numerical solu-
tions of the coupled electron-ion equations and equations of
motion.

For the case of sufficiently tight initial binding~i.e., r̃ 3

!1), an analytic expression can be obtained for the scaled
critical field

Ẽeff.x/I D52x/ r̃ 2, ~47!

where

x5
1

p
@&1 ln~2123/2!22 ln~21& !#.0.17. ~48!

This approximate result is shown in the dashed curve in Fig.
15.

We emphasize that the effective electric field,Ẽeff

5Ẽ(t)1P̃(t)Ãẑ, depends on both the lab-frame electric
field and the atom momentum. Moreover, a gradient in the
electric field gives rise to a force on the polarized atom and
changes its momentum. In a subsequent paper we will dis-
cuss the motion of the atom under this force. Here, we sim-
ply note that the change in the effective field due to the
change in the atom momentum is small for sufficiently tight
binding ~i.e., for r̃ 3!1).
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FIG. 15. Ionization by an effective electric field transverse to the magnetic
field for the simple case where the bounce action is zero~i.e., I z50). The

effective fieldẼeff5Eeff /(e/r2
2) and the drift actionĨ D5 r̃ 2/2 are scaled as in

Sec. III. The solid curve results from a theory based on the constancy ofI D

and the points from the solution of the coupled electron-ion equations of

motion. The dashed curve is an approximate analytic solution,Ẽeff.x/ĨD ,

that assumes tight binding (r̃ 3!1). The arrow atẼeff5P̃c[3/41/3 ~see Fig. 5

for the definition ofP̃c) limits the range of possible field ionization.
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