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Very weakly bound electron-ion pairs in a strong magnetic field are called guiding center drift
atoms, since the electron dynamics can be treated by guiding center drift theory. Over a wide range
of weak binding, the coupled electron-ion dynamics for these systems is integrable. This paper
discusses the dynamics, including the important cross magnetic field motion of an atom as a whole,
in terms of the system constants of the motion. Since the dynamics is quasi-classical, quantum
numbers are assigned using the Bohr—Sommerfeld rules. Antimatter versions of these guiding center
drift atoms likely have been produced in recent experiments2004 American Institute of Physics.
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I. INTRODUCTION electrostatic binding energyi.e., mew2/2<e?/r). The in-
. . . ) _equalityr>r4 then implies that .;=v/Q<r.

This paper dlscuss_es the_ motlon of a quasrc_lasgcal, Forr comparable ta; our guiding center analysis fails.
weakly bound electron-ion pair in a strong magnetic field. o} ihree frequencies in Eq1) are comparable, and the elec-
The field is sufficiently strong that the electron cyclotron,[ron motion is chaotié.Forr <r, the cyclotron frequency is
frequency is the largest of the dynamical frequencies and thgmall compared to the Kepler frequency, and the electron
cyclotron radius is the smallest of the length scales. In thi otion is again integrable. In this case, one can think of the

limit, the rapid cyclot.ron motion can be gvgraged out, an eakly bound pair as a highRydberg atom with a Zeeman
the electron dynamics treated with guiding center d”ftgerturbatior?

theory. These weakly bound and strongly magnetized pair The type of motion shown in Fig. 1, where the electron

are called guiding center drift atoms. N .
Figure 1 shows a picture of the motion in a simple limit. ExB grlft_s e;]roqnd thel lon, chccurs WhaﬂD?QCr‘]’ yi./.r'l
The guiding center electron oscillates back and forth along%jere’_ ci IS the lon cyclotron frequency ang Is the initial
elocity of the ion transverse to the magnetic field. For this

the magnetic field in the Coulomb well of the ion, and more ) NN S )
Slowlv Ex B drifts around the ion. Let=z.— 7. be the sepa- type of motion, the pair drifts across magnetic field with the
y ' e = P transverse ion velocity; much like a neutral atom.

ration of the electron and ion along the direction of the mag- However, if the ion velocity is too largdi.e., v;/r
1 Al | I

netic field andr=/(X,—X))°+(Ye—Y;)° the separation > . .
transverse to the field. For the case where the amplitude 0%‘”'3)' th_e EXB drifting electron cannot keep up W'.th the
ion. The ion runs off and leaves the electron, which is effec-

the field aligned oscillations is not too lardee., =), velv pinned h i field. M iselv. the i
the frequency of field aligned oscillations is approximatelyt'vey pinne to the magnetic /1eld. Vore precisely, the ion
moves in a large cyclotron orbit near the electron, the cyclo-

wz=ve“/(mer*) and the frequency of theX B drift rota- tron motion being modified by electrostatic attraction to the

. . . _ _ 3 _

tlonr:siapprcr)xnrr\alltetlyg,)t— vt?]/r_fe/t(rBr: ). Tlh(tarsitvaro fre N electron. Of course, the electron oscillations back and forth
quencies are related to he €electro czyc otron freque Cyalong the magnetic field can become unbounded during large
QO ..=eB/mg through the equatiof) .= ws/wp . Thus, the

. transverse excursions.
requirement that the cyclotron frequency be larger than the Figure 2 shows a kind of motion that can occur for rela-

other two frequencies imposes the ordering: tively weak binding [ie., Q¢ >wp, Of r>f,

Qo> 0,5 wp - @  =(m/mg)% ] The glectrorﬁx B drifts in the field of the
ion, and the ionEXB drifts in the field of the electron.
The ordering is realized for sufficiently large separationTogether they form a so-called “drifting pair.” In a drifting
(weak binding, that is, forr>r;=(m.c?/B?%)™. This in-  pair, the electron and ion move together across the magnetic
equality is required for validity of our analysis. field with the speed ,=ce/Br2.

Note that the the inequality implies not only that thatthe ~ The main purpose of this paper is to determine the char-
electron cyclotron frequency is large, but also that the elecacter of the coupled electron-ion motion as a function of the
tron cyclotron radius is small. We have in mind cases whereonstants of the motion. Fortunately, the Hamiltonian dy-
the electron kinetic energy is smaller than or of order of thenamics for the coupled system is integrable over a wide
range of weak binding. The electron-ion system has six de-

apaper QI1 3, Bull. Am. Phys. S0a8, 244 (2003. grees of fregdom S0 six constants of the motion are requjred
nvited speaker. for integrability. Four are exact constants: the Hamiltonian
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which corresponds t@—p separation of order I¢f cm.®
The magnetic field strength is 5 T, so the critical radius is
ri1=(mec?B?)¥=7x10"%cm. Thus, the separation is
much larger tham,, and the weakly bound pairs are guiding
center atoms. The cyclotron frequency for the positron is

about 100 times larger than ttiex B drift frequency wp,

and the cyclotron radius is about 100 times smaller than the

FIG. 1. Drawing of guiding center atom. In order of descending frequencyS€paration. The ATHENA group did not measure binding en-

electron executes cyclotron motion, oscillates back and forth along a fiel&rgies, but the theory of three-body recombination, expected

line in the Coulomb well of the ionEX B drifts around the ion. to be the dominant recombination process, suggests binding
energies in the same range as those for ATRAP.

There has been much previous work on the coupled
and the three components of total momentum. The remaininglectron-ion system in a strong magnetic field. A difficulty is
two are approximate constar@diabatic invarianjsthat re-  that a true separation of the center of mass moftoans-
sult from two frequency separations. Because the electrogerse to the magnetic fieldand the internal motion is not
cyclotron frequency is much larger than other dynamical frepossible. However, Avron, Herbst, and SimMdaund an ef-
quencies the cyclotron action is a good adiabatic invariantective separation by introducing the transverse pseudomo-
Use of guiding center drift variables automatically takes thismentum and showing that it is a constant of motion. The
constant into account and removes the cyclotron motiofinfluence of the transverse center of mass motion on the in-
from the problem. Because the frequency of field alignedternal motion is then accounted for by a pseudopotential that
oscillations,w,, is much larger than the remaining dynami- depends on the eigenvalue of the pseudomomentum. More
cal frequenciesassociated with cross field motipthe ac-  recently this effective separation was applied to the hydrogen
tion associated with the field aligned motion is a good adiagtonf and positroniund.
batic invariant. In our classical analysis, the transverse pseudomomenta

Inequality (1), which follows from the weak binding (p,  P,) arise as two new momenta in a canonical transfor-
condition r>r,=(mc?*B?)'? guarantees that the charac- mation, and the pseudopotential enters the transformed
teristic electron frequencies are ordered in accord with theyamiltonian. Our analysis differs from the previous work in
assumed frequency separations. The frequencies that charggat the Hamiltonian is simplified by the use of frequency
terize the cross field ion motiofi.e., {¢; andv;/r) also  ordering(2), which relies on both strong magnetic field and
must be small compared t,. The full frequency ordering \yeak binding. Introduction of the cyclotron action and of the
is then action for the field aligned bounce motion effectively aver-

Qo> w0, wp, Qi v T (2)  ages the Hamiltonian over the rapid cyclotron and bounce

) ) ~motions, removing two degrees of freedom at the outset. In
The relative size otwp, i, andv;/r need not be speci- ne language of atomic physics, a double Born—

fied; indeed, it is interplay between these frequencies thahppenheimer approximation is used. The remaining trans-
gives rise to the different types of motion discussed aboveyerse dynamics is always integrable, and a transverse action
We will return to a detailed discussion of the frequency or-can pe introduced. Since the Hamiltonian is expressed as a
dering later(see Sec. IV. _ function of the cyclotron action, bounce action, and trans-
The analysis is carried out in a reference frame whergg se action, a general expression for the quantum energy
the electric field vanishes. However, the effect of a uniformieyels can be obtained using the Bohr—Sommerfeld quanti-
electric field directed transverse to the magnetic field can bgation rules. Of course the assumption of weak binding jus-
included simply by shifting the transverse ion velodite., tifies the quasi-classical approximation—with the possible
v;(0)—v;(0)~cEXB/B?]. exception of the cyclotron motion, as will be discussed. We
Antimatter versions of these guiding center drift atomswill compare general quasi-classical predictions for energy

have likely been realized in recent experiments at the Eurdtevels to predictions from quantum calculations in limiting
pean Organization for Nuclear Resear¢BERN). The cases.

ATHENA* and ATRAP collaborations have both reported Much of the previous work has focused on an “outer
success in producing cold antihydrogen atoms. The ATRARvell” that exists in the pseudopotential for sufficiently large
collaboration measured binding energies of order meVpseudomomentum and the consequent “delocalized atomic
states.””® From the prospective of guiding center drift
theory, these delocalized states are simply an electron and
electron 4 o ion Ex B drifting in each other’s field as shown in Fig. 2.
The criterion for the existence of the outer well in the exact
pseudopotential is that the scaled pseudomomentum be

OSBEEEEEES larger than a certain valu®=P_.=3/4"3.8 The reader may
on wish to skip ahead to Eq18) for the definition ofP. This is

FIG. 2. A kind of motion that occurs when electron and ion form a drifting a necessary. criterion for the existance of the delocaliz?d
pair. states. Working with the bounce averaged pseudopotential,
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we find a necessary and sufficient criterion for the delocalthe dynamics. The removal of one degree of freedom results

ized statesP>P(1,), wherel, is the scaled bounce action. from averaging out the rapid cyclotron motion.
As we will see ﬁ’c(T ) reduces tP.=3/4% for T.=0 Let us make a canonical transformation to a new set of
’ Z C z .

The name “guiding center drift atom” was coined in varables
Ref. 1. Indeed, a version of Fig. 1 appears in Ref. 1. Like- eB c
wise, the possibility of EX B drifting pairs” and “runaway Px=pxit — (Yem¥i), X=g(PyitPye +xi,
ions” was discussed. However, Ref. 1 did not exploit the
integrability of the Hamiltonian to discuss the atom dynam- c
ics as a function of the constants of the motion, which is the  FY~=PyiTPyes Y= ggPxit Ve,
principle focus of this paper. Rather, anticipating the pro-

grams to produce antihydrogénRef. 1 extended the theory _ MiZi+ MeZe

of three-body recombination to the case of guiding center Pz=PaitPrer 2= mi+me ’ ®
drift atoms. The theory treated the simple case where the ion eB
(or antiproton is stationary. The general characterization of Py=—X+Pye, Y=VYe— Vi,
atom dynamics developed here is a prerequisite to an analy- ¢
sis of three-body recombination that takes into account ion MiPye— MoP,;
. _ 1Mze e~z _
motion. p,= mAm, Z=2.—2.
II. HAMILTONIAN AND CONSTANTS OF MOTION To verify that the transformation is canonical, one can check

. that Poisson brackets are equal to unity for conjugate vari-
We consider a uniform magnetic fielB=2zB repre- ables and vanish otherwise. The Hamiltonian in the new vari-
sented by the vector potentidl=BxYy. The external electric ables has the form

field is chosen to be zero. The Hamiltonian for a guiding 2
. . . . 1 eB 1 )
center drlft.electron and an ion '.[hat. interact electrostatically H=|_ 0+ —|Px— —y| + —(Py— py)
and move in the magnetic field is given by m; c 2m;
H—|Q+12+12 Loy Lo ¢
cerce om, Pze 2m, Pxi + mpz‘f‘ zpz— . > (6)
1 e 2 1 (—py +y%+272
2 2 eB
+2_ pyi__BXi +2_pzi
m; ¢ m; whereM=m;+m,, and u=mm,/(m;+m,) are total and
o2 reduced mass, respectively. Since the mass ratio is assumed
_ . @3 be small (n,/m;<1), we setM=m; and u=m, in the
c 2 subsequent analysis. The Hamiltonian is independentXf
Xi+ —gPye +(Yi—Ye) +(zi— 2e)? Y, andZ, soH, Py, Py, andP; are constants of the mo-

tion. We work in a frame wher®; is zero (the center of
Here, the first two terms are the electron kinetic energymass framg and we orient the coordinates axis so tRatis
where() .. is the cyclotron frequency arld, is the cyclotron  zero. This involves no loss of generality. In the Hamiltonian,
action. The product is the kinetic energy associated with vethe sum of the two terms that govern themotion are the
locity components transverse to the magnetic field. Sigge  binding energy
is a good adiabatic invariant arf@l. is constantfor a uni- )
o : 1 e

form magnetic fielg the product .Q) . is constant and does e pe
not influence the dynamics of the remaining variables. The — * 2u' * \f24+22’
quantitiesx;, Vi, zi, Ye, andz, are ion and electron coor-

. ) : . wh
dinates; and the momenta conjugate to these coordinates are
given by

)

ere

c
. F:(_e—pr, Y, O)E(Xe_xi! Ye = Yis 0). (8)
Pxi = M;X;,
eB The electron kinetic energy associated with velocity compo-
Pyi=Miyi+ —X;, nents transverse to the magnetic field is bound up in the
c cyclotron action,l... For a bound electron-ion paiH, is
(4) negative.

Pzi=M;z;, _ - )
In previous work=® the momentumP=(Py,Py) is
:_ﬂa’x called the pseudomomentum. Likewise, the second two
Pye c ¢ terms in Hamiltonian(6), which are the transverse kinetic
. energy of the ion, are thought of as a pseudopotential for the
Pze™MeZe- transverse internal motidi.e., for (y,p,)].

The electron position transverse to the field is specified by  One further constant is required for integrability, and it is
(Ye:Pye= —€BX/C), andX,pye=MeX, are removed from given by the bounce action for trlemotion,
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1 -Hr 2 42
N \—F==0|— P(O)=\7 T ECD-KE=DI=— (14
eafLr e
4t Using the first two terms in this series yields the approximate
expression
3t .
2ue
Hf H,(r,l,)=— 2 2
—[E(—-1)—K(— 2ur
i I+ —[E(-1)=K(-1)]e2u
1 = (15
€ We can see frontl15) that for finite bounce oscillationd {

02 04 06 08 1 #0), the electron binding enerdy, has the minimum pos-
: __ 4712 i
FIG. 3. Graphical solution of Eq(9). Knowing I, and r, one can find sible Va_‘lueHZ_ 2p€ /IZ' I the electron_ lon transverse
HAr1). separation were slowly reduced, the binding energy would
not go to minus infinity. Note that expressiéhb) is only
valid for I, such thatl ,>e+ur.

1 —H,r Substituting Egs(7) and (11) plus the choice®y=P,
l=5_ é pdz=eur @ e? |’ 9 =0 into Hamiltonian(6) yields an implicit equation for the

hase space trajectofie., for ,
which is a good adiabatic invariant for sufficiently large P P : I Py(Y)]

bounce frequency. In carrying out the integtdl, andr are

1 1
- im0 y2 )2
held constant. The functio®(¢) is given by H=lcellee M Qeiy™+ 2m; (Py=py)

2

_2ap fe@ @
o027 Vampes e

'_> 16

e\mer

) { E—1 wherer is related toy andp, through Eq.(8). The trajectory
=—F—| —&(&+ 1)5(— is specified by the values ¢f, P, andl,. With the addi-
lte +1 N 2
mENItE ¢ tional input of an initial point along the trajectofe.g.,y(t
e—1 E—1 -1 =0) orpy(t=0)], the Hamiltonian equations of motion can
+éK £r1 +11 £ 1) (100 be solved to findy(t) and p,(t). Given this solution, the

coordinates of the electron and ion are determined separately
whereE, K, andII are the complete elliptic integrals and the py

argument ofb is é= — H,r/e?. For future reference we note

that §=1/\Z2 12, Wherez,g, is the amplitude of the field 9% __ B % Py py(t)
aligned oscillations. Figure 3 shows a plot ®f¢€) on the dt mc” 7 odt omp o omy ]
interyal [0,1]. The figlure also shows a graphical inv.ersion to dpye GHrl)  dye aHLr1) (17)
obtainH, as a function ofl, andr. Formally, we write the =— , ——=——.
inversion as dt % dt IPy
5 These equations follow from Eg&}) and(5) and the choice

I,
e\vmer

When ¢é=—H,r/e? is close to 1, the amplitude of axial
electron oscillations in the Coulomb well is small comparedlll. PHASE TRAJECTORIES IN SCALED VARIABLES
to r, and the potential is approximately harmonic. In this
cased(¢) can be approximated by linear dependence:

€ -1
Hy(r l)=——®

The dependence of the phase trajectories on parameters
such ase and B can be buried in scaled variables. Using

D(=1-¢, (120 r,=(mc¥B?)Y=(m;/mg)Y"r,, Q- ', andm; as the units
andH, and!, are related as of length, time, and mass yields the scaled variables
e? P=Py/(mQqry),
Hy(r,1,)=——+1,0,, (13 ~
' y=yira,

wherew?=e?/(ur®). As one expects, the Coulomb potential

Pv=py/(MQir5),
energy,—e?/r, is corrected by the addition of a small term Py=py/(mileir2)

l,w,, the oscillation energy in a harmonic well. H=H/(mQ2r3), (18)
Analytic treatment also is possible when the amplitude

of oscillation is near the limit allowed by binding.e., H,=H,/(mQ2r3),

é=—H,r/e?<1). One can approximate the functiab(é) -

with an asymptotic series I=1,1(mQgr3),
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cezlce/(mchirg)! ﬁy:_(xe_ xi)/rz (a)

(19

where thef =%X?+y? andX= —P, . Likewise, Eq.(17) takes
the scaled form

and the scaled Hamiltonian

=4

PR

- )
dt dt
(20

dBye_ oH, d¥e_dH,
dt ay dt

whereH, is the last term in HamiltoniafiL9) and the scaled
time ist=tQ;.

We have in mind cases where the scaled variaBle$,
andp,= —X are all of order unity, bul, is of orderymg/m;.
The productym; /mgl,, which enters the last term is then of 1
order unity. In the following discussion of trajectories we
will specify the value of the produsfm; /ml,. The signifi-
cance of the facton/m;/m, will be apparent in the next 1 w —
section where we evaluate frequencies as derivativeld of y
with respect to actions.

For the simple casem;/m.l,=0, Hamiltonian(19) re- -1
duces to the form 5

1 1 2

V2 (21
2 By v, Bo25-7
y Y FIG. 4. (a) Phase trajectories for the case whgr-0, P=2.5>P; (b)

where the constant termm(/mg)T.. has been dropped. Section ofH(p,y.P) over the plang=0.

Phase trajectories in this case depend only on two param-
eters,H and P. Depending on the value @® there can be
different types of phase portraits. Three different cases arguires the electroft x B drift velocity to be large compared
presented in Figs. 4-6. to the ion velocity. From Eq(20), we see that fof <1 and

Figure 4a) shows the phase trajectories for the casep order unity or larger, the ion velocity is approximat@ly
where P=2.5 is greater than a certain critical value, \/(d7<i/dt)2+(d?i/dt)22P and the velocity T,
=3/4'3. Figure 4b) shows a plot ofH(y=0/p,,P). One E\/(dX/ /dt)2+ (dPy./dT)2=1/2. Thus, the ratio
can see thakl has two minima, one a§/(p,) = (0,0) (where ¢ ve ’
H— —c), and another =0 and finitep, .

There are three classes of trajectories divided by the
separatrix shown as the dashed curve in Fig).4or the
first class, the trajectories encircle the minimum Rfp()
=(0,0). For the second class, the trajectories encircle the
minimum aty=0 and finitep, . For the third class, the tra-
jectories encircle both minima. We will now describe the <d7<|>

C

~Pr2 (22)

<

e

is small for sufficiently smalf. The bound electron-ion pair
moves across the magnetic field with a velocity that is nearly
qual to the initial ion velocity,

prototypical motion for each class in an extreme limit where

the motion is simple. Of course, for a trajectory not near one

of these limits, say, a trajectory near the separatrix dividing (23

two classes, the motion is a complicated mix of the two dyi\ -~ ~ Uyi(0)

limits. '
For the trajectories encircling the minimum @t]jy)

=(0,0) with smallT= m the electronEXB drifts  Here, the angular brackets indicate an average over the rapid

around the ion as shown in Fig. 1. This kind of motion re- E X B drift motion of the electron.
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ﬁl’ =-(xe_ xi)/r2

) P, =-(%,- x)/r, (a)

2

1 Tz 1=
—_ [
N C:
1
1
0 &) I=
~— e’
~ S~
(3] N\

/

1 2 3 5
0.5} g
-1} -1
_l -5. 15'
2 -2t

FIG. 6. Same as in Fig. 4 blit=1.5<P, .

FIG. 5. Same as in Fig. 4 bir=23/4"*=P_ .

For the trajectories that encircle the second minimumand 4b) show the the trajectories and Hamiltonian for the

at & - B _all3
tightly, the electron and io& X B drift together as shown in critical value P, _3_/4 ' F|g~ures (ﬁa)~and Gb) show the
Fig. 2. According to Eq(20) the electron and ion velocities Same for & sub-critical valu®=1.5<P.. One can see that

are given by ExXB drifting pairs[see Fig. 2 are no longer possible.
- For the general case whexm, /ml,# 0, Hamiltonian
%: Pym %:5_5 (24) (19) must be used to plot the trajectories. An important dif-
di  [Pyml®  di ym ference is that the binding energy
whereP,, is the location of the minimum. Note the; /dt Mo 1 \/Hilz 26
andd”pye/dT are both nearly zero. The minimum is the root z T Me 7
of _ does not diverge &t=0 whenym;/mgl , is non-zero. This is
dH ~ Py to be expected since the potentiall/\z>+T? does not di-
0= dpr:_(P_pyH B, (29 verge atf=0 for finite Z. As mentioned earliefsee Eq.

815)], H, reaches the minimum value 2/(\/m; /m.l ;)2 ast

so the electron and ion velocities are equal, both given by th ~ - .
approaches zero. Plots ¢, vs T for various values of

EXB formula. T
For the large circular trajectorieé.e., ¥>1), the ion  VMi/Mel; are shown in Fig. 7.

executes a cyclotron orbit in the vicinity of the electron. The ~ The phase trajectories for non-zefm; /mel, are quali-

electronEXB drift velocity is small compared to the ion tatively I!<e those shown in Figs. 4—6. However, the critical

Ve|0city for these |arg@' trajectories_ value of P, Slgﬂlfylﬂg the loss of the Separatrix, is a S|OW|y
If the value of the transverse momentdiis decreased, decreasing function ofm;/mel,. Figure 8 shows a plot of

the minimum ay=0 and finitep, disappears. Figures®  P(ym;/mgl,) for ym;/ml, ranging from O to 1. As illus-
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Y

02 04 0.6 08

FIG. 7. Plot of binding energy, at different values ofym; /mgl,. (1)
Jm/mi,=0 (in this case H,=—1F); (2 Jmi/mJ,=0.3; (3
Vm; /mel ,=0.6; (4) Vm; /mgl ,=0.9.

trations, Figs. 9 and 10 show phase space trajectories for the k N\ \

same values oP [i.e., P=1.5] but for different values of

Jmi/mgl, (.e., ym;/mJ,=0.3 and Jm;/m.,=0.9). In  FIG. 9. Phase portrait of the system for the case wherl.5, Vm; /mgl,
Fig. 9 there is no separatrix, sinéa: 1.5 is below the criti- =0.3; the radius of dashed circle in the center is equélter,/r,.

cal value P,(y/m;/mgl,=0.3)=1.64; whereas in Fig. 10
there is a separatrix, sind&=1.5 is above the critical value
Po(ym; /mgl ,=0.9)=1.15.

(m; /me)TC~O(1). The scale cyclotron frequency is
aH/31 .=m; /m,, the scaled frequency of field aligned oscil-

lations is 9H/4l ,~O(y/m;/m,) and the scaled cross field
frequencies are of order unity. Thus, the three classes of fre-

IV. FREQUENCY SEPARATION AND THE ADIABATIC quencies in inequality?) are ordered asn;/m.>+/m;/m,
INVARIANTS =1
In this section, we examine the frequency separation re- Let us look at the field aligned oscillations more closely.

quired for validity of the adiabatic invariants. For a caseFor arbitraryé=T/\¥2+%2,, the scaled frequency is given

where the separation is well satisfied, we will see that &Y
solution of the full equations of motion, including the elec- ~ — 32

i ; JH m; 1 1 m; [ &
tron cyclotron motion, compares well to the corresponding z_ oL _ il s 08, (27
trajectory obtained using constancy of the adiabatic invari-  gj MT2 —d' (&) me \ T ’
ants. For a case where the separation is not satisfied, the
numerical solution of the full equations of motion exhibits
breakdown of the adiabatic invariants and apparent chaotic

motion. 7
The frequency separation can be understood as a conse-

guence of the large mass ratn, /m,>1. In Hamiltonian

(19), suppose that the cross field scaled variables are all of

order unity [i.e., P, ¥, B,~O(1)] and that ym;/ml,,

2| P

1-5\

0.5} N \ Q,
m;/m, I, \

0.2 0.4 0.6 0.8 1 _
FIG. 10. Phase portrait of the system for the case wikenl.5,

FIG. 8. Plot of P (T,). vm; /ml,=0.9; the radius of dashed circle in the center is equal to
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FIG. 11. Plot of function®(¢).

08

where the functior®(¢) is plotted in Fig. 11. Sinc®(¢) is

unity to within a factor ofv2 over the full range of values

(i.e., 0 ¢=<1), the scaled frequency is approximately
aH,

[mi [ ¢ \/F 1
m me (F2+722,,,) %

for arbitraryZ,.. As expected, the maximumH,/al ;| max

Jm; Img 32, occurs forzy,,,=0.
In Sec. | we required that

\/H 1
me'FS/Z

max

3/2

= (28)

i

al,

aH,

il

m;
—_3

Me

(29

which can be written as the requiremantr,(mg/m;)Y?

=r,. SincedH,/dl, is much smaller tha@H,/dl | max fOr
ZmaT, one might think that requiremer(29) is overly re-

strictive. However, there are high frequency components in

the motion that are of order ofm;/ms %2 These high

frequency components are associated with the passage of t{he

electron near the iofi.e., for z<r). In unscaled variables,
the high frequency components are of ordel/r, where
mev2~e?/r, which when scaled is ve/(r Q)
= Jm;/msf %2 Thus, the criterion used in Sec. | is correct
even forz,,,>T.

Turning next to the requirement that the cross field mo

tion be slow compared to the field aligned oscillations, we.

note first that the cross field motion affects the field aligne
oscillations only through the time dependence #it) [see
Eq. (7)]. Thus, we examine the Poisson bracket

(30

whereH is the scaled Hamiltoniafl9).
The different trajectories in the figures of Sec. Il are

characterized by different time dependenciesyf@r). Con-
sider, for example, the three classes of trajectories in Fi

H at¥=0, (1) oscillates at the rotation frequency of the
vectorT(t), which when scaled isop /Q¢=1F3. Equiva-

lently, from Hamilton’s equations we obtaiaH/a(F%/2)
=ala(F212)(— 1F) =13
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Figure 4a) is plotted for the case wherg,,,=0 and
H,=—1F. For a case where,,>r, such as the plots in

Fig. 9, one can show that the rotation frequency is approxi-
mately

oH, 1
a2 T3 ¢

1

¥ 2 +T2)%0

For the trajectories in Fig. 4 that encircle the minimum
in A at finiteD,, the ion and electroi x B drift together, as
shown in Fig. 2, but the ion also executes cyclotron motion
in the drift frame. In unscaled variablegt) varies at the
frequency(.;, which corresponds to the scaled frequency
Q.i/Q:;=1. One can easily check this result using the
scaled Hamiltonian directly.

For the trajectories in Fig. 4 that encircle both minima,
the scaled frequency of the motion is approximately
0. /Q:=1, but there can be high frequency components
associated with the close passage of the ion near the electron
(i.e., for smallf). An estimate for the high frequency com-
ponent is

whereT is the minimum value of the cross field separation
and we have assumed thm;uizsez/r. The frequency of
field aligned oscillations given in Eq27) must be large
compared to the cross field frequencies, so we obtain the
requirement

1dr? yP
—_——= <

5=

1

T

1

73/2

Uj
Mol

(32

24 T

[m 1 . 1 L1
—_ >
Me (72_‘_'22)3/4 T3/2(72+~22)3/4' 7372'

The first term on the right is small compared to the term on

(33

e left provided that>(m./m;)*3, which is the same as
inequality(29). This inequality(i.e.,r>r,(my/m,)3=r,) is

the basic requirement that the the binding be sufficiently
weak.

The second term on the right is small compared to the
term on the left provided that the binding is not too weak
li.e., F2+7%)Y2<(m;/my)Y?. Thus, the allowed electron-
on separations are bounded below and abdve.,
(me/m)3<F, (F2+7%)Y2<(m,/mg)¥3. Even for an elec-
tron and proton, the ratio of the upper to the lower bound is
large, M, /mg)?3=150. Finally, the third term on the right is
small compared to the term on the left provided the atom is
not too elongatedi.e., Zma/F<(m/m)*. For applications
such as to the weakly bound pairs in the ATRAP and ATH-
ENA experiments the lower bourfde., (m./m;,)Y3<¥] is
the constraint of primary concern.

As examples, we now examine numerical solutions of
the full equations of motion for a case where the lower

: . . o boun nstraint i isfi n where it is n is-
4(a). For the trajectories that encircle the minimum value O?bou d constraint is satisfied and a case where it is not satis

fied. In Fig. 9, the dashed circle indicates the lower bound
[i.e., F=(m./m,)¥®=0.082] for the case of electron-proton
mass ratio. The upper bound is well outside the domain of
the figure. The adiabatic invariants should be conserved for
trajectories that lie completely outside the dashed circle.
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o4 » rise and fall of the transverse electric field breaks the adia-

) batic invariants, mixing axial and transverse kinetic energies.

ﬁ One can see in Fig. 10 that the size of the cyclotron radius
varies from excursion to excursion gradually increasing.

-0.4 0.2 02 04 06, 08 _1
-o.z\v/ by V. BOHR-SOMMERFELD QUANTIZATION

Since the motion is quasiclassical, we introduce quantum
numbers by using the Bohr—Sommerfeld rule, that is by
quantizing the actions. Hamiltonid@6) includes the the cy-
FIG. 12. Numerical solution of the equations of motion for the trajectory clotron action and the action for field aligned oscillations

starting at T,=(0,0,0), T,=(0.7,0,0), 7.=(0,0-39.297), 7, . , ; . :
~ (0.0.8,0.0213919)m, /m.— 1837: the electron is not treated in drift ap- but the action for the cross field drift motion must still be

proximation(i.e., full dynamics in magnetic field for both particles intrOdqced- o . .
This action is obtained by solving Eq16) for p,

=py(H—1celee,Py,l,,y) and evaluating the integral
Figure 12 shows a trajectory obtained by numerically

solving the full equations of motion, including the cyclotron | :i § H=1.0_ Po.l.v)d 34
andz-bounce motion. As expected for a case where the ac- ° 2 Py(H = lcellee, Py 12 y)dy 39
tions are good invariants, the trajectory differs only slightly o\ er a contour of consta. Iy is simply 1(2m) times the
from the corresponding trajectory in Fig. 9. The small ripplesphase space area enclosed by the contour.

on the trajectory in Fig. 12 are caused by the change in the ¢ quantization is effected by setting=%ng, I,
drift velocity as the electron oscillates back and forthzin =#n,, andl ;=% (n.+ 1/2) in Eq.(34), whereng , n,, and
Smaller and higher frequency oscillations caused by ¢, are integers. The 1/2 is retained in the quantization rule

electron-cyclotron motion are not visible in the figure. for the cyclotron motion sinca, may be relatively small. In

In Fig. 10, the dashed (l:/i3rcle_ again is drawn to indicateéyinciple, Eq.(34) can be inverted to find the system energy
the lower boundt = (m./m;)~"*. Figure 13 shows the result

] y ° ) as a function of Py and the quantum numbersH
of a numerical solution of the full equations of motion for a _ H(Py,n.,n,,np). the momentunPy is not quantized.

trajectory that starts af, =7)_:(0-26’(_)) and has vglues_ of Fortunately, this prescription is easy to carry out in the
vm;/mel, and Py corresponding to Fig. 10. For this trajec- most important limit: a guiding center drift atom with rela-
tory zpna/r~0(5-10) is rather large. The periodic helical tively tight binding. In this case the drift motion corresponds

excursions on the trajectory occur when the electron is near @ that shown in Fig. 1. Equatiof84) then reduces to the
turning point for the field aligned oscillations. The electronsimple form

cyclotron motion combines with the slow ion velocity to

produce the helical excursion. When the field aligned oscil- :i § p,dy= i ﬂ?’ fﬁ xdy= e_Bﬂz (35)
lation brings the electron near the ion again, the transverse ° 27 Y 2w C 2mc

electric field rises dramatically, and the electron steps to thg herer is the radius of the nearly circular orbit. Quantizing
next helical excursion. The combination of the excursiongye actionl 5 then yields the allowed radii,

and the periodic electron steps produce a trajectory that

loosely follows the trajectory in Fig. 10. However, the rapid 2finpc
r(np)= eB (36)
f Substituting this expression and the quantized values of
I. andl, into Hamiltonian(16) yields the allowed energies
H Py +hQ + e 1|t
=-— N+ =|— .
2m; Ve 2] r(np) eyvmer(np)
/) -
In writing the kinetic energy for the ion aB%/(Zmi), use
01_r02 was made of the fact that(np) is small (relatively tight
Py binding). For the case wheré, also is small[i.e., Zyax
<r(np)], approximationg12) and(13) yield the further sim-
plification
H Py hQ ¢ f
= 2—mi+ ce| et 5]~ er w[r(Np)]ng,
(38)
FIG. 13. Numerical solution of the equations of motion for the trajectory .
starting at T.—(0,0,0), T,=(0.26,00), T.—(0.0-104.005), T,  Wherewy(r)=ev(mer).
=(0,1.24,0.056 666)m; /m,= 1837; the electron is not treated in drift ap- For small changes in the quantum numbers, the change

proximation(i.e., full dynamics in magnetic field for both particles in the energy is given by
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9H IH IH 04 2/
AH= AN+ ——hAN,+ ——HhANy, (39 E.N(H;/e)
al¢ al, dlp
where dH/Jl.=Q¢e, JIH/I,=w,, and IH/Jlp=wp.
Thus, the energy level spacings for single integer changes in
the quantum numbergA(., An,, Anp=1) are ordered as
the frequencie$see inequality(1)]. Further, since the ener-
gies associated with the cyclotron motion, field aligned os-
cillations, and Coulomb interaction are comparable, the cor- ~
responding quantum numbers are ordered inversely to the 0.32F * )
frequenciedi.e., nc<n,<np). —H,rle
We note that more accurate calculations would find cor-
. 02 04 06 0.8 1
rections togH/dl . that are of ordepH/dl = wp . However,
these corrections contribute negligibly to the overall energyFIG. 14. lonization by an electric field parallel to the magnetic figldis
sincenp>n,. the critical field for ionizationH, is the initial binding energy before the

. e R . atom enters the electric field, ands the radius of the nearly circular initial
Finally, for a drifting pair with an electron Or_blt near th_e drift orbit. The solid curve results from a theory based on constandy,of
bottom of the outer Wel[S?e the small nearly. C"C_Ular orbit and the points are solutions of Hamilton's equations of motion.
centered aty=0, p,=P) in Fig. 4]; the Hamiltonian may

be Taylor expanded about the bottom of the well to obtain

0.38}

0.36}

0.34}

H= Ot o) 4 1°H 1 #°H o2 First consider the case where the electric field is parallel
celce™ @zizT 5 57 y*+ 2 ,}’p 02 Py )% to the magnetic field and the atom is moving slowly up a
(40 gradient in the field. The binding energy in ET) is then
where replaced by
2 2
92H e5B3 Pz
—mQ2— H,=-—— ———¢eE 4
Wz—miﬂci W, z 21 212 e z(t)z, ( 3
2H 1 e3R2 (41 whereE,(t)=E[Zyon{t)] is the electric field at the location
‘9_p>2/ = ﬁ —ZW, of the atom, and we have neglected the variation in the field

over the dimensions of the atom. As the atom moves up the
and p(°)~P is the bottom of the well. Also, we have taken gradient in the fieldH, is not constant in time. Rather, the
the S|mple case of small axial bounce motion and used Ecaction,
(13). In this case, the Bohr—Sommerfeld quantization rules

yield the energy levels |z(Hz,EzJ)=% 35 p,[H,.E,.r,z]dz (44)
1 [6?H 9°H : . o N
H=%0c N+ = | +how,n,+ —hnp. (42 is constant until just before ionization. For simplicity, we
2 &y IPy consider tightly bound drift orbits with nearly circular orbits
For our frequency ordering this expression reproduces resuld neglect variation in during the ionization process.
obtained previous|y using a quantum treatment for a qua- The electric field cannot increase |ndef|n|te|y At a cer-
dratic aproximation to the outer wéll. tain critical value ofE,(t), one of the turning points for the
integral in Eq.(44) ceases to exist, the adiabatic invariant
fails, and field ionization occurs. Implementing these ideas
VI. EIELD IONIZATION numerically yields the solid curve in Fig. 14: a plot of the
scaled critical fieId,EZ/(H§/e3), versus the scaled radius,
Thus far, we have considered the case where the externalH,r/e?. Here,H, is the initial binding energy, that is, the
electric field vanishes in the laboratory frame. As was menbinding energy before the atom enters the electric field. Re-
tioned earlier, the case of a uniform electric field directedcall that H, is related tol, andr (or, the drift actionlp
transverse to the magnetic field is included implicitly =eBr?/2c) through Eq.(7). The limit —H,r/e?=1 corre-
through a change of reference frame, that is, a shift in theponds td,=0. In this limit, EZ/(H§/e3) reaches the maxi-
initial ion velocities, V;(0)—V;(0)— cEXB/B?. However, mum value 2/83. Although the full curve in Fig. 14 was
such a shift cannot account for an electric field that is parallebbtained numerically, the maximum value can be obtained
to the magnetic field or an electric field that is spatially vary-analytically. To check this theory, Hamilton's equations of
ing. motion were integrated forward in time through the field
In the ATRAP experimentS,ionization of the guiding ionization event for various initial conditions. The results are
center drift atoms by an electric fieldield ionization was  shown as the points in Fig. 14. One can see that the theory
used to measure binding energies. For interpretation of sudhased on constancy ¢f is accurate.
experiments, it would be useful to know the critical field for The scaling used in Fig. 14 provides a significant sim-
ionization as a function of the quantum numbé@saction$  plification. Without the scaling, the critical field would have
for the atomic state. to be written as a two-dimensional functio,=f(H,,r).
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The scaling results from the fact that the Coulomb interac- 7
tion does not introduce a separate length scale, so all lengths D
can be scaled in terms ef/H, . 0.12¢

Next consider the case where an atom moves up a gra- o1}
dient in a transverse electric field. For a sufficiently weak
gradient, the electric field can be treated as uniform over the 0.08}
dimensions of the atom, but slowly varying in time because 0.06}
of the motion of the atom. As mentioned, a uniform trans- g4}
verse field can be accounted for by a shift in ion velocity, or

equivalently, a shift in the total transverse momentum 02}
m;cE(t) XB
PP~ P(t)— éz) 1 45) 1 2 3 4 5 6 7

FIG. 15. lonization by an effective electric field transverse to the magnetic

whereE(t) is the electric field at the location of the atom, field for the simple case ";’here the bounce action is zeeq |,=0). The
ffective fieldEqq=E.;/(e/r5) and the drift actior ,=T2/2 are scaled as in

We have also allowed for a slow time dependence in th@ec Il The solid curve results from a theo

L . AN ry based on the constarlgy of
atom momentumP(t). The electric field polarizes the atom, ang the points from the solution of the coupled electron-ion equations of
and then the gradient in the field gives rise to a weak forcenotion. The dashed curve is an approximate analytic soluBigp=x/Ty,
on the atom and a slow time variation in the atom momenthat assumes tight binding{<1). The arrow aE =P, =3/4"2 (see Fig. 5
tum. We will discuss this point later. Here, we need onlyfor the definition ofP,) limits the range of possible field ionization.
realize thatP.x(t) changes slowly in time because of the
atom motion.

Substituting Peg(t) for P in Eqg. (16), with P, not set . )
arbitrarily to zero, yields a Hamiltonian for the relative larger than the momentum at which the outer well disappears
electron-ion motionr(t). To understand the field ionization (i-€., Ees=[Per|>P:=3/4"%, see Fig. 5 The solid curve in
process, it is useful to refer again to Fighyt The peak in  Fig. 15 results from the theory based on constancy of the
the effective potential separating the Coulomb well and theadiabatic invariants, and the points are from numerical solu-
outer well moves to the left d®.¢(t)| increases. Correspond- tions of the coupled electron-ion equations and equations of
ingly, in Fig. 4@ the x point in the separatrix moves to the motion.
left. We imagine that the atom starts with a nearly circular ~ For the case of sufficiently tight initial binding.e., 7°
guiding center drift orbit inside the Coulomb well. As the <1), an analytic expression can be obtained for the scaled
atom moves up the gradient in the transverse electric fiel@itical field
and |Pg«(t)| increases, the point moves toward the orbit, ~ _
and |the or|bit distorts from circularity. Eventually, the phase Eet=x/10=2x/T", (a7
trajectory crosses the separatrix to the outer well. The atorwhere
becomes a drifting pair and is quickly ionized by the gradi-

ent. One can easily show that drifting pairs are always sepa- y= —[v2+In(2+2%?3) -2 In(2+v2)]=0.17. (48)
rated by a field gradient. Effectively, field ionization occurs ™

when the trajectory crosses the separatrix. This approximate result is shown in the dashed curve in Fig.
During this process, the Hamiltonian is not a constant of; 5,
the motion sincd.4(t) depends explicitly on time. However,

_ We emphasize that the effective electric fielq
the transverse action

=E(t)+P(t) X2z, depends on both the lab-frame electric
1 field and the atom momentum. Moreover, a gradient in the
lo=5_ j; PyLY.H, 12, Peg(t) ]dy (48)  electric field gives rise to a force on the polarized atom and
changes its momentum. In a subsequent paper we will dis-
is nearly constant up to the separatrix crossing. The charaguss the motion of the atom under this force. Here, we sim-
teristic time for a drift cycle is small compared to the time ply note that the change in the effective field due to the
scale on whictP(t) changes. The constancy of the actions,change in the atom momentum is small for sufficiently tight
Ip andl,, allows us to determine the criticiP.q| for field  pinding (i.e., for73<1).
ionization as a function of the initial values of the actions.
Figure 15 shows the result of a numerical implementa-
tion of these ideas for the simple case whéye0. The
abscissa and ordinate are scaled as in Sec. lll. The ordinate

the scaled drift actionlp=1p/mQar5=7%2, where T The authors wish to thank Professor Gerald Gabrielse
=r/r; is the scaled radius of the nearly circular initial drift and Professor Fred Driscoll for helpful discussions.

orbit. Rather than referring to a critical effective momentum  This work was supported by National Science Founda-
for ionization, we refer to a critical effective electric field, tion Grant No. PHY9876999, Office of Naval Research
Eer=|PesXB/mic|. The abscissa in Fig. 15 is the scaled Grant No. N00014-96-1-0239, and the BHP Billiton Petro-
critical field, Eeﬁ=Eeff/(e/r§). The critical field is always leum Technology Program.
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