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ABSTRACT

We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measure-
ments, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation
volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation
plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental
observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests
including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson
criterion v is estimated for all experiments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087115

I. INTRODUCTION

Inertial confinement fusion (ICF) is the process by which fusion
fuel is compressed to high density and temperature with the goal of
producing an abundance of thermonuclear fusion reactions before the
fuel disassembles.1,2 A variant of this approach, known as magneto-
inertial fusion (MIF), uses an embedded magnetic field to ease some of
the requirements imposed by traditional ICF.3 In either ICF or MIF,
accurately characterizing the plasma conditions during the period of
neutron production (e.g., stagnation) is of paramount importance for
understanding target performance, assessing the impact of target mod-
ifications, evaluating the relative importance of sources of degradation,
and ultimately for charting progress toward high yield. Fusion experi-
ments are highly integrated with many interdependent processes

occurring simultaneously, making cause and effect difficult to quantify.
For this reason, multiphysics simulations are used to design and, in
many cases, interpret the experimental results. Unfortunately, these sim-
ulations are extremely complex and expensive to perform. Furthermore,
without a detailed understanding of the state of the plasma in the experi-
ment, it is difficult to adequately constrain the simulations, making pro-
gress difficult.

The magnetized liner inertial fusion4–6 (MagLIF) concept is an
approach to MIF that is being pursued on the Z machine at Sandia
National Laboratories.7 In this approach, a pre-imposed magnetic field
is used to insulate a hot laser-heated fuel volume from an imploding
cylindrical metal liner. If the fuel is kept sufficiently pure and is able
to retain enough of its energy during the implosion, it will reach
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conditions where significant thermonuclear burn can occur. In order to
understand the performance of a given target and how it compares to
our expectations, we must understand the state of the fuel during neu-
tron production. In these experiments, many diagnostics are fielded to
measure various physical quantities relating to the plasma conditions of
the experiment. Unfortunately, most quantities of interest must be con-
strained using multiple diagnostic outputs. As an example, the fuel pres-
sure cannot be directly measured, only inferred through measurements
of other quantities like temperature and density. Furthermore, the infer-
ence of pressure will depend on the level of contaminants in the fuel,
which contribute extra electrons and is, itself, a difficult parameter to
estimate. The measurement of pressure, therefore, requires information
frommany diagnostics and is inherently a multi-objective inference.

For these reasons, we are pursuing an inversion technique based
on Bayesian inference that uses multiple different diagnostic signatures
to simultaneously constrain multiple quantities of interest. In this
approach, sometimes referred to as data fusion or data assimilation,8

an appropriately parameterized model is used to generate synthetic
diagnostic data, which are compared with all of the experimental data
simultaneously, incorporating known constraints on parameters. This
method allows us to estimate the most likely configuration in the
N-dimensional parameter space, the associated uncertainties, and cor-
relation between both data and inputs.

The remainder of this paper is organized as follows: In Sec. II, a
brief introduction to Bayesian inference is given along with the details
of the algorithm developed for this application. In Sec. III, the physics
model is introduced along with the formalism used to form each of
the synthetic diagnostics. In Sec. IV, we present a series of validation
tests, where data are produced using analytic models and multiphysics
simulations to demonstrate the utility of the technique. In Sec. V, we
present the analysis of real experimental data, and finally, in Sec. VI,
we discuss the outlook for using this methodology for experimental
data analysis as well as planned extensions of the physics model to bet-
ter capture experimental nuances.

II. PARAMETER ESTIMATION VIA BAYESIAN
INFERENCE
A. Bayesian inference

In recent decades, Bayesian inference has become a popular and
versatile method used for data analysis in a wide range of fields.9 It is
used extensively in neuroscience,10,11 geophysics,12,13 particle phys-
ics,14,15 astrophysics,16,17 dynamic material properties,18 high energy
density physics (HEDP) experiments,19 and to determine tokamak equi-
libria and current profiles in magnetic confinement fusion research,20,21

among other applications. The application of this approach to ICF is
fairly new but is quickly gaining momentum.22 Recent efforts have used
Bayesian methods to analyze implosion performance on the NIF23,24 to
study energy flow in direct drive implosions on the OMEGA laser25 and
to infer fuel magnetization in MagLIF implosions on the Z facility.26

The basic problem we wish to solve is the following: With a
model FðmÞ describing the physics and diagnostic observables of
interest, we wish to find the set of model parameters m that best
matches a set of observables x with associated uncertainties r. This
model could, in principle, be anything from a multiphysics simulation
to a reduced model commonly used for data interpretation. Bayesian
statistics provides us with a formalism to accomplish this task in a rig-
orous and quantitative way. In the Bayesian worldview, the model can

be viewed as a hypothesis about the physics describing the system. We
have some degree of certainty that this hypothesis accurately describes
our system given some prior knowledge about the parameters. This
quantity is called the prior and can be written mathematically as
PðmjAÞ (read as the probability of m given A), where A encapsulates
our background knowledge about the system including all physical
constraints and assumptions. In the Bayesian interpretation, we seek
to find the distribution of m that describes the data by evaluating
the probability distribution of agreement with the observations over
the entire space of m. This function is written mathematically as
Pðxjm;AÞ and is known as the likelihood. Formally, it is the probabil-
ity of observing the data, x, given a set of model parameters, m, and
our background assumptions A.

Typically, we construct a model for the probability of observing x
given a particular m (the likelihood) and an expression encapsulating
our prior assumptions from knowledge of the physical system and
measurements. What we want is an expression giving us the probabil-
ity of a particular m, given our observations and assumptions. Bayes’
theorem states

Pðmjx;AÞ ¼ Pðxjm;AÞPðmjAÞPðxjAÞ ; (1)

where the term on the left hand side (known as the posterior) is pre-
cisely what we desire. The term in the denominator is known as the
evidence and for our purposes is simply a normalization constant.
(When performing model selection, this term is essential.) A funda-
mental tenet of Bayesian inference is that it is impossible to analyze
data without making assumptions. While this is always true, it is often
not acknowledged or stated explicitly in practice. The Bayesian formal-
ism requires that one write down these assumptions and explicitly
define their relationship with the data, embodied in the term A above
and the model being used.

The likelihood is determined by the problem at hand. For exam-
ple, if the problem is to estimate the number of counts measured on a
radiation detector, then one would use the Poisson distribution as their
likelihood function. If the problem is to estimate the probability of flip-
ping N heads over the course of M flips, then one would use the bino-
mial distribution. In our case, and indeed in most data analysis
applications, we use the normal distribution as our likelihood. It can
be expressed as

Pðxjm;AÞ /
YN
i¼1

exp �ðF iðmÞ � xiÞ2

2r2
i

 !
: (2)

This expression states that the likelihood is maximized where the func-
tion F iðmÞ equals xi and drops off with a standard deviation equal to
the uncertainty in the data, ri. The functions F iðmÞ are the forward
models that describe the mapping from model parameters to observa-
tions. In our case, the xi are the diagnostic measurements, and the F i

are the synthetic diagnostic models used to calculate the measure-
ments from a given hotspot configuration. We note that the product
form of the likelihood above amounts to an assumption that the errors
are independent with zero mean.

B. Methodology

The task is to estimate the posterior distribution, PðmjxÞ, where
we will drop A for simplicity. One has simple analytic expressions for
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the prior probability, PðmÞ, and the probability of the observations
given the model, PðxjmÞ, both given by normal distributions. The
numerical challenge is introduced by the forward model, FðmÞ, in
Eq. (2). We adopt a two-step procedure, where the first step estimates
a Gaussianized approximation of the posterior distribution, then the
second step samples, using a classic Metropolis method,27 the nonlin-
ear aspects of the posterior distribution starting from the maximum
aposteriori (MAP) model and making proposals using the covariance
matrix estimated by the first step.

Many of the Gaussians are truncated so that the model parame-
ters are restricted from unreasonable or nonphysical values, equivalent
to the Tobit model construction in applied statistics.28 If a value is pro-
posed that is outside the bounds, the value is set to the bound before
the objective and derivatives are calculated. This is equivalent to there
being a finite probability of being on the boundary.

For the first step, a Levenberg–Marquardt29,30 (LM) least squares
optimization is done using finite differences to estimate the derivatives.
Multiple optimizations can be done starting from different starting
points chosen from the prior distribution. This is to ensure that if there
are multiple modes, they are enumerated.

The prior distributions are not based on strong knowledge and
are weak guidance to keep the inversion away from nonphysical and
unreasonable extremes. Unfortunately, these priors can induce a bias
on the results. We implemented an outer loop on the inversion, where
the mean of the prior for the next iteration is set to the MAP of the
previous posterior distribution, but the covariance is set to the covari-
ance of the starting prior. It has been shown that this is nearly equiva-
lent to having a uniform prior, effectively removing bias induced by
the prior, and has rapid convergence, converging within two to three
iterations.31 This outside loop is also used to optimize for the uncer-
tainties in the first step. Because the sigmas appear both in the
exponent (quadratic term) and in the logarithmic prefactor of the log-
likelihood, the optimum value for the sigmas is determined by the
balance between these two factors. For the purposes of this study, only
the initial Gaussian LM step is used to estimate the posterior, as testing
found little benefit to performing the Metropolis sampling. See the
Appendix for examples comparing the posterior found with each
method for justification.

A few more words need to be said about the practical applica-
tion of Eq. (2) when there are multiple measurements and some of
those measurements are one-dimensional (1D) or two-dimensional
(2D) signals. For computational efficiency, the signals are sub-
sampled so that they are not significantly oversampled, but we do
not push the Nyquist sampling limit. An estimate is then made of

the number of degrees of freedom or independent data points in the
signal. The likelihood is then scaled to give the correct value if
the expected value of the deviations of the synthetic forward model
of the measurement from the data is the size of the expected
uncertainty.

The algorithm is written in Python and uses an extended ver-
sion of pyMC2,32 where LM least squares optimization, message
passing interface (MPI) parallelized multiple start optimization and
Markov Chain Monte Carlo (MCMC) chains, and a MCMC sam-
pler starting from the LM MAP using a step size given by the LM
covariance have been added. The program has both a graphical
user interface (GUI) and command line interface (CLI) enabled by
the Traits33 and TraitsUI34 packages.

III. THE PHYSICS AND FORWARD MODELS

In this section, we will detail the models used to make inferences
about plasma conditions in MagLIF experiments. In Sec. IIIA, we
describe the physics that goes into our model of the stagnated plasma,
or hotspot. In Secs. III B and IIIC, we detail the models that are used
to compute x ray and neutron emission from the hotspot, respectively.
Finally, in Sec. IIID, we discuss the forward diagnostic models. These
models take the x-ray and neutron emission as inputs and return syn-
thetic diagnostic signatures.

A. The hotspot model

In order to determine the plasma conditions at stagnation, we
have constructed a simplified model of the hot, neutron producing
plasma, i.e., the hotspot. The hotspot is defined by a series of one-
dimensional, isobaric cylinders (slices), illustrated in Fig. 1(a), each
with height dh and radius RHS. The number of slices used to approxi-
mate the experiment is a parameter that can be varied, but for the pur-
poses of estimating bulk stagnation metrics it is set to N¼ 3. This
allows gross axial variations to be captured in the averages reported
but avoids issues with overfitting of the high frequency axial variations
and instability in the optimization algorithm. As mentioned, each slice
is isobaric, meaning the pressure is a constant function of radius, but
each slice can have different pressures. Each slice is defined by six
parameters:

pressure;PHS; temperature;Tc; mix fraction; fmix;

mix charge;Zmix; hotspot radius;R; liner areal density; qR‘:

One final parameter, the burn duration sb, is taken as a constant for
all slices and is directly measured using x-ray radiation power

FIG. 1. (a) Cartoon representation of a
hotspot surrounded by a compressed liner
showing variations in the hotspot emission
and liner areal density as a function of
height. (b) Schematic representation of
one “slice” of the hotspot with imposed
gradients in temperature and mix.
Arbitrary radial mix profiles for multiple
species are shown.
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detectors. The temperature parameter Tc is defined as the central, on-
axis temperature in a radially varying profile. The ion and electron
temperatures are assumed to be equal. The mix fraction is assumed to
be radially uniform. Finally, the hotspot is surrounded by a liner. In
this model, we assume the liner to be uniform and only characterized
by its areal density, qR‘. These parameters are illustrated in Fig. 1(b).

In the isobaric approximation, we assume that the temperature
varies as a function of radius according to a power-law,35,36

TðrÞ ¼ Tc 1� r
R

� �a

1� Tb

Tc

� �" #
; (3)

where a is the power-law exponent, Tc is the temperature at r¼ 0, Tb

is the temperature at the liner wall, and R is the hotspot radius. By fix-
ing a and Tb to be sensible values from simulations, the temperature
profile is then characterized by a single free parameter, Tc. Following
McBride and Slutz,35,36 we take Tb=Tc ¼ 0:1. By enforcing the isobaric
condition, the density is then determined as qðrÞ / 1=TðrÞ. This
allows us to replace the density with pressure and pull it out of any
subsequent volume integrals, which simplifies the calculations and
emphasizes the prominence of the fuel pressure as a fundamental stag-
nation parameter. To do this, we write

PHS ¼ nekBTe þ nikBTi ¼ ð1þ hZiÞnikBT; (4)

ni ¼
PHS

ð1þ hZiÞkBT
; (5)

where ni is the total ion density, kB ¼ 1:6022� 10�19 J=eV, and
hZi ¼

P
s Zsfs is the average charge of the plasma, where s denotes all

plasma ion species, including the fuel. In the above expression, we
have assumed that the ion and electron temperatures are equal, a good
assumption in MagLIF experiments.4

The model is formulated such that multiple species can be
included with different radially varying profiles with the constraint
that the sum of all species concentrations, including that of the fuel,
must equal to one. For this study, we adopt the simplest mix profile
and assume a uniform concentration across the hotspot. In this
approximation, the mix fraction is constant, so the absolute amount of
a mix species varies with the density, increasing toward the outer
radius of the hotspot.

B. X-ray emission

With the appropriate expression for the radial temperature pro-
file determined, we can calculate the x-ray emission from each slice of
the hotspot. Following Ma et al.37 and Epstein et al.,38 we write the
time integrated x-ray emissivity, which for simplicity we will call the
emissivity, as

�� ¼ sbe
�qR‘j�gFF

X
s

fsjs; (6)

where in this expression, j� is the liner opacity, gFF is the free–free
Gaunt factor, and fs and js are the fraction and emissivity of each spe-
cies, s. The Gaunt factor is a function of temperature and can be writ-

ten as gFF � 0:87 2
ffiffi
3
p

p

ffiffiffiffi
T
h�

q
.38 Assuming line emission is negligible, the

emissivity is the sum of the free–free and bound–free emissivities,
js ¼ jsff þ jsbf , with

jsff ¼ Aff hZi
n2s Z

2
s

T1=2
e�h�=T ; (7)

jsbf ¼ Abf hZi
n2s Z

4
s

T3=2
eRyZ

2
s =Te�h�=T ; (8)

where Aff ¼ 2� 10�32 J3=2cm3=s=eV is the free–free emission coeffi-
cient,Abf ¼ 4� 10�31 J5=2cm3=s=eV is the bound–free emission coef-
ficient, and Ry ¼ 13:6 eV is the Rydberg constant. To simplify the
expression, we define

~js �
js
jD
¼ Z2

s þ
Afb

Aff

Z4
s

T
eRyZ

2
s =T ; (9)

where jD ¼ Aff hZi n2D
T1=2 e�h�=T is the emissivity of deuterium. Invoking

the isobaric condition to replace the density, we write the total emis-
sion as

�� ¼ Aff e
�qR‘j�sb

P2
HSgFFhZi
ð1þ hZiÞ2

X
s

fs~js
e�h�=T

T5=2
; (10)

where again, the summation is over all plasma species (fuel and con-
taminants). The above expression is plotted in Fig. 2 for different

FIG. 2. (a) Emission from a pure deuterium plasma at various temperatures for a
uniform temperature profile. (b) Emission from a 97% deuterium, 3% beryllium
plasma. Solid lines are the analytic approximation, and dashed lines are SCRAM
calculation.
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temperatures and two different Be mix fractions along with a more
accurate calculation using SCRAM39 for comparison, showing that the
analytic expression used here is reasonably accurate.

C. Neutron emission

The neutron output can be calculated in the same manner as the
x-ray output. In this case, the expression for the number of fusion
reactions per unit volume (neutron emissivity) is

�n ¼
1

1þ dj;k
sbfjfkn

2
i hrvij;k; (11)

where fj;k are the concentrations of species j and k, dj;k is the
Kronecker delta, and hrvij;k is the Maxwell-averaged fusion reactivity
for species j and k, which is a function of temperature.40 Again, invok-
ing the isobaric condition, we get

�n ¼
P2
HSsb

1þ dj;k

fjfkhrvij;k
ð1þ hZiÞ2T2

i

: (12)

We also wish to calculate the neutron spectrum, dNn=dEn which is
used to compute synthetic neutron time of flight signals, a measure-
ment that is sensitive to ion temperature. We can define a neutron
spectral function with a normalized integral as

Ð1
0 f ðEnÞdEn � 1.

Then the spectrum can be written as

dNn

dEn
¼ P2

HSsb
1þ dj;k

fjfkhrvij;k
ð1þ hZiÞ2T2

i

f ðEnÞ: (13)

The above expression simply weights the spectrum produced at each
location by the emissivity. Integrating the above expression over neu-
tron energy results in the total neutron yield. For this model, we use
the exact, relativistic expression for the neutron spectrum derived by
Ballabio et al.41 This model assumes a Maxwellian plasma. While
z-pinch driven fusion schemes often exhibit non-Maxwellian behav-
ior,42,43 the MagLIF concept has demonstrated that the neutron spec-
trum and yields are thermonuclear in nature.5,44

D. Synthetic diagnostics

The various synthetic diagnostic outputs used in the analysis are
formed by taking different spatial and spectral integrals over the
expressions for the x-ray and neutron emissivities in Eqs. (10) and
(13), respectively. The diagnostics used in this analysis are the filtered
x-ray yields, DD neutron yield,45 neutron time-of-flight spectrum
(nTOF), multi-channel filtered time integrated pinhole camera
(TIPC),46 and the spherical crystal imager.5

The neutron yield is obtained simply by integrating Eq. (13) over
volume and neutron energy. The radiated x-ray energy is measured
using filtered x-ray power detectors, typically photoconducting dia-
monds (PCDs),47 which are integrated in time to obtain the absorbed
energy. These measurements are integrated over the whole volume
and can be expressed as

Y� ¼ X
XN
n¼1

ð1
0
dh�Aðh�ÞFðh�Þ

ð
Vn

��;ndV ; (14)

where X is the solid angle subtended by the detector, A is the detector
response including x-ray absorption, F is the filter transmission, and

Vn is the volume of the nth slice. The summation is over all slices char-
acterizing the stagnated fuel column. Typically, three PCDs with dif-
ferent Kapton filters (25:4, 254, and 508lm) are fielded on a shot.

The TIPC contains five different channels, each with different
filters and a spatial resolution of �150–200 lm. This spatial resolu-
tion is adequate to resolve axial variations in the �cm scale stagna-
tion column, but not to resolve the radial gradients since the
average stagnation radius (�50 lm) is much smaller than this. As
such, we use this diagnostic as a 1D imager by integrating both the
experimental data and the synthetic profiles over the radial dimen-
sion and use each axial slice as the basic unit for axial spatial resolu-
tion. This gives the total x-ray emission in the jth channel from the
nth slice

Yn
�;j ¼ CIPX

ð1
0
dh�Aðh�ÞFjðh�Þ

ð
Vn

��;ndV : (15)

In this expression, X is the collection solid angle of the pinhole, A is
the image plate response,48 CIP is a calibration factor for the image
plate scanner,49 Fj is the filter transmission for the jth channel, and Vn

is the volume of the nth slice.
The spherical crystal imager is an x-ray imaging system that

provides good two-dimensional spatial resolution (dx � 15–80 lm
depending on the configuration). The optic is monochromatic, though
it reflects efficiently in multiple reflection orders. Because the instru-
ment images in both dimensions, the integral expressing the signal is
more complicated. The spatially dependent signal from the nth slice
can be written as

InðxÞ ¼ 2dhX
ð1
0
dh�R

ð1
x

��;ndrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p

� �
� hðxÞ: (16)

In this expression, x is the position at detector,R is the spectral sen-
sitivity of the instrument including the spectrally resolved detector
sensitivity (image plate), the total transmission of all the filters in
the system, and the photon energy dependent reflectivity of the
crystal, X is the collection solid angle of the crystal, and h(x) is the
point spread function of the imaging system approximated as a
Gaussian with which the spatial profile is convolved. The crystal
reflectivity is approximated as a series of delta functions in photon
energy at each of the energies that satisfies the Bragg condition for
the imager. The photon energy of the first order reflection, the effi-
ciency at different orders, and the spatial resolution are all depen-
dent on the specific configuration of the instrument used on any
given experiment.

Finally, the nTOF signal is calculated by integrating Eq. (13)
over the hotspot volume giving the total neutron spectrum. The
energy spectrum is then corrected for the light output of the scintil-
lator, which varies with incident neutron energy and converted into
the time domain by transforming the spectrum according to the dis-
tance propagated to the detector.50 The time domain signal is then
convolved with an instrument response function (IRF) that accounts
for the composite temporal response of the scintillator and photo-
multiplier, giving the final nTOF signal, dNDD=dt. Due to the com-
plicated scattering environment present in the Z facility, which can
contaminate the low energy (late time) portion of the signal, only
the first �3=4 of the signal (i.e., only the high energy portion) is
used to perform the analysis.
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IV. VALIDATION OF DATA ASSIMILATION
FRAMEWORK

In this section, we will describe two forms of validation tests con-
ducted to build confidence in both the algorithm and the model used
to infer experimental plasma conditions. In Sec. IVA, we test the algo-
rithm and data processing methods using analytic plasma models that
do not contain any temporal evolution. This includes a case where the
exact solution is recovered and an ensemble of cases where three-
dimensional (3D) structure is incorporated. In Sec. IVB, we employ
MHD simulations to create synthetic data from 1D and 3D simula-
tions of MagLIF implosions. These tests incorporate time dependence
in the synthetic data as well as additional physics in the simulation,
allowing us to assess the impact of various model assumptions on our
inferences.

A. Test cases

The first step we undertook to confirm that the parameter infer-
ence is working properly and that the problem is well posed was to use
the physics model described in Sec. III to generate a hotspot configura-
tion and synthetic diagnostic outputs. The inversion was then used to
estimate the axial parameter profiles for the known configuration. For
this test, we ran the inversion on a case with imposed axial variations
in pressure, temperature and fuel radius, and uniform liner qR and
mix fraction. The profiles of pressure, temperature, liner areal density,
and fuel radius are shown in Figs. 3(a)–3(d) as the red lines along with
the most likely values determined by the inversion (solid green lines)
and the 25% and 75% quantiles (dashed green lines). The mean and
25% and 75% quantiles of the prior are shown as the solid and dashed
blue lines, respectively. Some variations are shown in the prior as a
function of position, which is due to the random nature of the sam-
pling, not to imposed variations. In general, we see excellent agreement
between the actual parameter values and most likely inferred values.
There are some areas where the inferred solution does not lie exactly
on the input value, but the discrepancy is much smaller than the stan-
dard deviation of the posterior. This test confirms that we are able to
recover the exact solution in the most ideal case.

Imaging data from MagLIF experiments reveals a rich variety of
structures characterized by a quasi-helical morphology of the column,
axial brightness variations with varying frequency, axial variations in
the apparent width of the column along a given line of sight, and

occasional bifurcations of the emission column that suggest the emer-
gence of a double-helical structure.5,44,51–54 Taken together, these
observations indicate a three-dimensional structure to the stagnation
column that is not captured in our model. In order to validate the use
of our cylindrical model to estimate bulk stagnation quantities, we
have constructed a double-helix stagnation model that is used to gen-
erate an ensemble of hotspots. Each instance is then processed in the
same manner as experimental data, bulk parameters are inferred and
compared to the true values from the ensemble. The model is con-
structed using two Gaussian plasmas centered at the locus of points
corresponding to each helix, shown schematically in Fig. 4(a). The
wavelength, amplitude, and phase of the helices are allowed to vary as
a function of height. At each axial location, the plasmas are character-
ized by a single pressure, mix fraction, and liner areal density but have
individual radii and temperatures. A smoothly varying axial profile is
prescribed for each of the parameters with random fluctuations added
on top. Four examples of stagnation columns generated using this
model are shown in Fig. 4(b).

It was found that the complexity of the crystal images needs to be
reduced for the purposes of extracting bulk quantities with our simpli-
fied model. The complexity reduction process we derived for this pur-
pose is shown in Fig. 5 using data collected during shot z3040. Panel
(a) in Fig. 5 shows the data as recorded by the spherical crystal imager.

FIG. 3. Pressure (a), temperature (b), liner areal density (c), and fuel radius (d) used as the inputs for the test case to perform the inversion shown in red. Solid green lines are
the inferred most likely parameters with the 25% and 75% quantiles (dashed lines) used to show the confidence interval. The prior distribution is shown in blue.

FIG. 4. (a) A cartoon depiction of the radial structure of the plasma in the double
helical model. (b) Four stagnation instances generated from the double helical
modeling illustrating the variety of structures and morphologies generated by this
model.
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The recorded data exhibit significant variations in the horizontal direc-
tion which we cannot capture with our model. To remove these varia-
tions, we first determine the maximum intensity location in each pixel
row and center the pixel row on that position, producing the image
shown in panel (b). Horizontal variations have been significantly
reduced in the shifted image, but further processing is needed since
several pixel rows still exhibit asymmetries in the x-direction. This is
especially evident when examining the top half of the image in panel
(b). We remove these remaining asymmetries by comparing the regu-
lar and horizontally flipped versions of each pixel row. If the pixel row
under investigation is dominated by a single-peaked intensity profile,
the difference between the regular and flipped pixel rows is small. The
regular pixel row is adopted as final in this case. If, however, the pixel
row contains an intensity profile with multiple peaks, we isolate the
dominant peak, scale it to the total pixel row intensity, and adopt the
result as final. We show an example of a single-peaked intensity profile
in the top panel of Fig. 6 and a multi-peaked profile in the bottom
panel of that figure. This process gives rise to panel (c), the “cleaned”
image, in Fig. 5. The cleaned image is then cut intoN¼ 3 slices, shown

for illustrative purposes as red dashed boxes in Fig. 5 panel (c), all of
which are then vertically integrated. The final image shown in panel
(d) results.

An ensemble of 50 instances of the double helix model was gen-
erated to validate the use of the cylindrical model in obtaining bulk
stagnation information. Each instance was used to generate the full
suite of data including the crystal image, processed as discussed
above, TIPC, PCD yields, neutron yield, and the nTOF. All infer-
ences were made using a three-slice model. The results are summa-
rized in Fig. 7, where the true values from the model are plotted
against the inferred values for pressure (a), temperature (b), fuel vol-
ume (c), liner areal density (d), and beryllium mix percentage (e). In
each plot, the dashed line corresponds to perfect agreement between
the truth and posterior values. The error bars along the abscissa rep-
resent the 2r confidence interval of the posterior, while the error
bars along the ordinate represent the 2r interval of the distribution
of true values in the model. All values from the double helix model
and the posterior are x-ray emissivity weighted so that we can make
an accurate comparison between the model and inference. Emissivity
weighting is computed as

FIG. 5. (a) Crystal image obtained on shot z3040. (b) The same image as shown in
(a) after the straightening procedure was applied. Dashed red boxes indicate the
regions over which the image will be averaged to produce the three-slice represen-
tation of the data. (c) The result of averaging the image over the three regions
shown in (d).

FIG. 6. Top row shows a symmetric pixel row, requiring no modification. Bottom
row shows a pixel row that contains multiple peaks and asymmetry. The initial pro-
file (red) and the flipped profile (dotted blue) are significantly different in this case.
The dashed black line shows the modified pixel row adopted as final in this
instance.

FIG. 7. Plots of the true model values vs the inferred values for (a) pressure, (b) temperature, (c) fuel volume, (d) liner areal density, and (e) Be mix percent. The dashed line
in each plot indicates perfect agreement. The error bars along the abscissa represent the 2r confidence interval computed from the posterior, and the error bars along the ordi-
nate represent the 2r variation in parameters along the length of the column. All parameters are emissivity weighted as described in the text.
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hQi ¼

ð
V
dV
ð1
0
dh�e�Qð

V
dV
ð1
0
dh�e�

; (17)

where Q is the quantity of interest and e� is the x-ray emissivity from
Eq. (10). The quantity hQi is computed for each sample in the poste-
rior, from which the mean and confidence intervals are estimated.

We can readily see that the inferred temperature, pressure, and
fuel volume agree quite well with the true values over the entire range
tested. This result indicates that the procedure used to process the
highly structured images is able to recover an unbiased estimate of the
fuel volume. Though the trends are captured accurately, the liner areal
density and mix fraction reveal a bias in the estimates of the parame-
ters which we attribute to the three-dimensional structure in the vali-
dation model. In particular, both parameter estimates are biased
toward higher values than the true value from the model. By examin-
ing the posteriors and resulting uncertainties in the plots, it is apparent

that these parameters both have very large uncertainties indicating the
current incarnation of the inference model and the diagnostics used is
not particularly sensitive to these quantities. Additionally, these two
parameters are highly correlated which could be partially responsible
for the bias. These results give us a high degree of confidence that our
cylindrical model can be used to extract bulk performance metrics, in
particular pressure, temperature, and volume, from experimental data.

B. Comparison with simulation results

Due to the simplifications used to describe the state of the
plasma, we need to check our model’s ability to provide useful infer-
ences against more complete multiphysics simulations. The most basic
assumption that we need to validate is the use of a stationary hotspot
model to infer parameters of a highly dynamic process. So a funda-
mental question can be asked: When we infer a set of stagnation
parameters using our simple model, what exactly do they correspond
to? Due to the fact that neutron and x-ray production are/ P2, which
is itself / 1=r2c (where c ¼ 5=3 is the polytropic index), we expect
that the measurements we make will be highly biased toward the time
of minimum radius. Yet, we must evaluate how much the stationary
assumption affects the solution and, consequently, our interpretation
of the results of a given experiment.

A static mesh refined implementation of the Gorgon system of
MHD equations55–57 was used to simulate a one-dimensional implosion
and produce synthetic data specifically to focus on the question of time
dependence. The evolution of the important 1D parameters and neu-
tron and x-ray pulses are shown in Figs. 8(a) and 8(b), respectively. The
temperature and pressure used for comparison in these plots are taken
at r¼ 0, where the temperature is peaked, closely corresponding to the
temperature parameter in our model. The radius (yellow line) is taken
as the inner radius of the liner. From this simulation, synthetic TIPC,
PCD, crystal imager, and neutron yield diagnostics were created. A
small amount of Gaussian noise was added to the simulated diagnostic
data. The burn duration was arrived at by taking the FWHM of the sim-
ulated x-ray pulse, exactly as we do for the experiment.

In Fig. 9, we compare the posterior distribution (yellow) to the
prior distribution (green) and the 1D simulated stagnation parameters
extracted at peak burn (red), weighted by the neutron emission
(orange), and weighted by the x-ray emission (light blue). Note, in the

FIG. 8. (a) Plot of the time evolution of the plasma pressure (blue), temperature
(green), liner areal density (orange), and inner liner radius (yellow) as a function of
time from the 1D Gorgon simulation. (b) The simulated neutron (blue) and x-ray
(orange) pulses from the 1D Gorgon simulation.

FIG. 9. Comparison of inferred stagnation
pressure (a), on-axis temperature (b), fuel
radius (c), mix fraction (d), and liner qR (e)
with the Gorgon simulated values at peak
burn (red), neutron weighted (orange), and
x-ray weighted (light blue). The center of the
box shows the P50 values, and the edges
show the P25 and P75 values of the prior
(green) and posterior (yellow) with error bars
indicating the 95% confidence intervals of
the distributions.
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case of temperature where there is a radial dependence, the emission
weighted temperature is the on-axis temperature weighted by the
emission history. This is done so that the simulated quantity more
closely maps to the model parameter which defines the on-axis tem-
perature. We can see that in general, agreement is quite good with the
simulated values, and agreement is closest for the x-ray weighted val-
ues. However, for pressure and temperature, the neutron and x-ray
weighted values lie within the 95% confidence interval. The radius is
extremely tightly constrained and agrees best with the x-ray weighted
value. The mix value does not dynamically evolve in this simulation,
so the comparison is more straightforward.

The largest source of disagreement is with the liner areal density.
In the simulation, this quantity was calculated by integrating the liner
density out to infinity, e.g., qR‘;sim ¼

Ð
q‘dr. In contrast, the only view

the model has on the liner areal density is through the attenuation of
x-rays as they leave the hotspot on their way to the detector, for which
we use cold opacity tables. We expect that as the liner is compressed
and heated to a warm, dense state, the opacity will change.
Additionally, the material at large radius that is carrying significant
current could be quite hot and, therefore, has lower opacity than the
bulk compressed liner material. It is, therefore, consistent with our
intuition that the areal density inferred via x rays is different than the
physical liner areal density.

Our final validation task was to process 3D simulation results
and compare the results with quantities from the simulation. This
test compounds both the three-dimensional structure effects as well
as the time evolution effects, which are both neglected in our model.
For this test, full height 3D implosions were simulated in Gorgon to
capture the end effects. The laser energy was deposited directly into
the gas, not by detailed simulation of the laser propagation in the
gas. A uniform 2% Be mix fraction was artificially imposed in the
gas at the start of the simulation. The simulation was driven using
an experimentally derived circuit model and source voltage. Three
runs were used in this validation, of which one representative exam-
ple is shown in Fig. 10. The runs used different instability seeds and
preheat energies to produce different stagnation conditions and
structures.

Figure 10(a) shows the crystal image produced from one of these
runs giving a sense of the structure. The box plots in Figs. 10(b)–10(e)
show the x-ray emissivity weighted temperature, pressure, fuel radius,
and fuel volume, respectively. In each plot, the posterior distribution is
shown in yellow, the prior distribution is shown in green, and the true
value is shown in purple. The boxes indicate the standard deviation of
the distribution with the error bars indicating the 95% confidence
interval. The line inside the boxes indicates the mean value. For the
true values, the distribution indicates the variation of each of the quan-
tities along the height of the column. The true volume is shown as
point with no distribution, because it is a volume integrated quantity.
We can see that the temperature, pressure, and radius agree extremely
well with the true values extracted from simulation. The inferred vol-
ume is slightly above the true value but still lies well within the 95%
confidence interval. This is partly due to the fact that the volume is cal-
culated from the simulation data by setting an emission threshold
above which fuel volume is included in the summation, while the
model volume contains 100% of the emission by construction.

It is worth noting that the distribution of the inferred radius is
narrower than the distribution of the value obtained from simulation.
This is a statement that the effective radius of the entire column, within
in the confines of the model used, can be described by the inferred dis-
tribution. This should not be interpreted as a statement that we believe
the actual radius to be known to greater precision than simulation
warrants. This discrepancy originates from the fact that the model is
not able to describe all of the variations observed in the stagnation col-
umn. It is for this reason that we use the plasma volume, not the
radius, in the analysis that follows.

The inferred mix fraction was 1:56 0:5%, comparing favorably to
the 2% Be mix fraction imposed in the simulation. The liner areal den-
sity again shows a bias toward being low. In this case, we infer a value
of 0:46 0:1 g=cm2 compared to the true value of 1:16 0:2 g=cm2. As
before, these values are inferred with relatively low confidence. The
results of all of the validation tests confirm that we can infer fuel pres-
sure, temperature, and volume with high confidence. Mix and liner
areal density are inferred with lower confidence and have the potential
for significant bias, though the trends appear to be recovered well. The

FIG. 10. (a) Crystal image generated from one of the 3D Gorgon simulations used for validation. (b)–(e) The prior (green), posterior (yellow), and true (purple) values of x-ray
emissivity weighted pressure, temperature, radius, and fuel volume, respectively. The boxes indicate the standard deviation of the distribution with the errorbars indicating the
95% confidence interval. The line through the box indicates the mean of the distribution. The distribution of true values indicates the variation along the height of the stagnation
column.
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addition of new diagnostic information, e.g., from x-ray spectroscopy, is
the most promising avenue to resolve this concern.

V. APPLICATION TO EXPERIMENTAL DATA

Having validated our methodology for the extraction of critical
performance metrics, we applied the analysis to an ensemble of 36
MagLIF experiments (see the Appendix for examples of the posterior
distribution from this analysis). These experiments span a wide range
of experimental conditions that date back to 2015 and were chosen
based solely on the quality of the data return. This represents the most
comprehensive analysis of a wide range of experiments providing
much needed input to our understanding of the response of the
MagLIF system to changes in experimental inputs. Typically, these
results have focused on the change in neutron yield with respect to
changes in input and stagnation conditions. For the first time, our pos-
terior inference provides us with the information needed to estimate
the generalized Lawson parameter v directly,58 a critical parameter
needed to quantify proximity to ignition and scaling prospects. We
define v in a form allowing the incorporation of the effects of mix as
follows:

v ¼ 2
3

fDfT
ð1þ hZiÞ2

easE
VHS

ð
V
PHS
hrviDT
T2

dV ; (18)

where ea ¼ 3:5MeV is the energy of a DT fusion alpha particle,
hrviDT is the DT fusion reactivity, PHS is the hotspot pressure, T is the

fuel ion temperature, and sE is the energy confinement time. In our
case, we assume sE � sb, the FWHM of x-ray emission measured by
the PCDs and used in the inference. We did not use DT fuel in any of
these experiments, but our model inference allows us to compute the
DT reactivity of our plasma via the inferred pressure and temperature
profile. We further assume that the experimentally inferred deuterium
fraction is equally split into deuterium and tritium. The integral is over
the fuel volume V, allowing us to account for the radially varying fuel
temperature in our model. The results of this analysis are shown in
Fig. 11, where we have plotted each point in temperature–pressure
space. The color of each data point corresponds to log10v determined
using the posterior values for the pressure, temperature, and fuel vol-
ume in Eq. (18). The contours on the plot represent contours of equal
v, where v¼ 1 is the threshold where self-heating becomes dominant.

Three of the experiments analyzed in this study have achieved
v ¼ 0:06–0:08 with each of these experiments producing DD neutron
yields of 0:5–1:1� 1013. The stagnation pressures achieved in these
experiments span a fairly large range of 1:2–1:8 Gbar with tempera-
tures of 2:5–3:3 keV. These conditions were enabled by steady pro-
gress in improving experimental capabilities allowing larger drive
currents, higher initial magnetic fields, fill densities, and coupled pre-
heat energy while reducing mix.52,59,60 The results of the inferences as
well as the initial conditions for these three experiments are summa-
rized in Table I. We note that Z, as presently configured, is not capable
of achieving v ¼ 1, as higher pressures, and correspondingly, higher
drive currents are needed than what is accessible on Z. The topic of
scaling existing experiments to larger driver energy is the subject of a
number of recent studies.60,61

VI. DISCUSSION

We have detailed a multi-objective Bayesian parameter estima-
tion algorithm using a reduced physics model to infer the plasma con-
ditions during neutron production in MagLIF experiments. The main
benefits of this approach compared to a more traditional one instru-
ment at a time approach are: (1) fully consistent determination of all
important plasma parameters and (2) improved confidence in the
inferred parameters with rigorously defined uncertainties. We
described the physics and diagnostic models used, as well as the algo-
rithm employed to perform the parameter estimation.

The model developed for this purpose employs a cylindrically
symmetric, radially isobaric, static stagnation column where axial var-
iations are allowed through the use of independent axial sections,
referred to as “slices.” This model of the stagnation plasma is used to
generate neutron and x-ray emission that are processed by synthetic
diagnostic models to produce filtered x-ray yields, neutron yield, neu-
tron time-of-flight, a multi-channel filtered x-ray pinhole camera, and

FIG. 11. Results of the inference for the entire ensemble of MagLIF experiments.
Results are plotted as inferred stagnation pressure vs temperature. Error bars indi-
cate the 1r confidence interval. The color of each point shows the value of log10ðvÞ
computed from the posterior distribution of pressure, temperature, and fuel volume.

TABLE I. Table summarizes the input and inferred parameters of the three experiments that achieved the highest values of v. We identify each shot by its shot number. The
peak drive current Ipeak, initial magnetic field Bz;in, initial gas density qgas, preheat energy coupled to the fuel EPH,

62 the measured DD neutron yield YDD, and measure x-ray
burn width sb are shown. The inferred emissivity weighted temperature T, stagnation pressure PHS, hotspot volume VHS, and Lawson parameter v are reported with 61r confi-
dence interval.

Z shot # Ipeak (MA) Bz;in (T) qgas (mg/cm3) EPH (kJ) YDD �1013 sb (ns) T (keV) PHS (Gbar) VHS (mm3) v �10�2

z3179 15 15.8 0.7 0.95 0.55 1.8 3.36 0.1 1.26 0.07 0.036 0.002 8.46 0.9
z3236 15 10 1.05 1.35 1.1 2.1 2.96 0.1 1.36 0.07 0.086 0.004 6.26 0.6
z3289 20 15.9 1.05 1.15 1.1 2.0 2.66 0.3 1.86 0.16 0.056 0.007 7.16 1.8
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a high resolution monochromatic x-ray image. These synthetic diag-
nostics are compared to experimental data to find the stagnation con-
ditions that simultaneously best match the suite of observations.

A series of validation tests were presented to demonstrate that
the technique is able to recover the proper solution when one is
known. These tests included the recovery of the exact solution when
the same model is used to generate data and infer parameters. A three-
dimensional double-helix model was used to generate synthetic data
that better match the character of experimental data. An ensemble of
50 instances from this model was used to validate the inference of
emissivity weighted stagnation conditions in the presence of significant
three-dimensional structure. It was shown that the temperature, pres-
sure, and volume of the stagnation are inferred accurately. The mix
fraction and liner areal density show a systematic bias in this test,
though the trends are recovered accurately. Finally, stagnation

conditions were inferred from the output of 1D and 3D Gorgon simu-
lations. Parameter estimation performed on synthetic data produced
from the 1D simulation shows that the method can be used to deter-
mine stagnation conditions with high fidelity, despite the model hav-
ing no time dependence. Performing the same inference on the 3D
simulated data shows that the emissivity weighted temperature, pres-
sure, and fuel volume are recovered accurately.

This methodology was applied to an ensemble of 36 MagLIF
experiments. The posterior distribution of temperature, pressure, and
volume was used to compute the generalized Lawson criterion v for all
experiments. This analysis shows systematic improvement in perfor-
mance corresponding to ongoing efforts to improve experimental
capabilities such as preheat energy deposited in the fuel and initial
magnetic field. Detailed results from the three highest performing
experiments to date are shown.

FIG. 12. Corner plot showing the posterior distributions of the five inferred model parameters from the middle slice using the z3019 dataset. The blue data points show the
result using the Gaussian approximation while the orange shows the result using the MCMC step.
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Future work will focus on three parallel directions: (1) model
improvement, (2) value of information, and (3) data-driven experi-
ment design. First, our results suggest that a three-dimensional struc-
ture is a significant contributor to bias in the inferences. A model
that accurately captures the rich structures is required both to
improve the fidelity of our inferences and to assess the impact of this
structure on performance trends as well as efforts to control mor-
phology. We will also explore both the addition of other physics,
such as density and temperature dependent liner opacity to further
reduce bias, and the simultaneous analysis of multiple experiments
since some of the model parameters are common between the experi-
ments. Second, we can use the tools developed here to test the value
of adding new diagnostic information to the inference. By modeling
the outputs of new diagnostics (e.g., x-ray spectroscopic signatures of
density, temperature, mix, and liner areal density), we can quantita-
tively test their impact on the inferences through our validation
framework. This gives us a quantitative metric with which to priori-
tize the incorporation of additional extant data as well as new

developments to improve our understanding. Finally, this work pro-
vides a database of detailed performance metrics from a wide range
of experiments with a variety of input conditions. We will seek to use
this information and similar information obtained on subsequent
experiments to guide the design of new experiments to optimize per-
formance and extract more physical insight.
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FIG. 13. Corner plot showing the posterior distributions of the five inferred model parameters from the middle slice using the z3179 dataset. The blue data points show the
result using the Gaussian approximation while the orange shows the result using the MCMC step.
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APPENDIX: POSTERIOR DISTRIBUTIONS

In this appendix, we show the posterior distribution for some
of the inferred parameters from two experimental data sets using
both the Gaussian approximation and the MCMC step. Figure 12
shows the posterior distribution of the five inferred physics parame-
ters from the middle slice for the inference using the z3019 dataset.
The corner plot shows the marginalized distribution of each param-
eter on the diagonal while the off diagonal plots show the pairwise
joint histograms for each parameter. The blue data show the poste-
rior inferred using the Gaussianized LM step only, while the orange
data show the result when adding the MCMC step. We see in this
example that the MCMC serves to reduce the width of some of the
distributions, and introduces a small bias relative to the Gaussian
step which is within the uncertainty. The Gaussianized posterior is,
therefore, viewed as a conservative estimate of the posterior. In
some cases, the Gaussian posterior overestimates the correlations
between parameters.

Figure 13 shows the same as above, but for z3179, one of the
highest performing experiments. We see in this case that the poste-
rior inferred using the MCMC step almost exactly reproduces the
Gaussianized posterior, but with reduced uncertainties. Again, dem-
onstrating that the Gaussian posterior represents a conservative
estimate with small to negligible bias introduced by the Gaussian
approximation. As a result of this observation, all inferences made
in this work, including in the validation and comparison with simu-
lation, were done using the Gaussian approximation. We expect
that for certain classes of problems this approximation will be vio-
lated, so it should continue to be checked in the future.
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