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The collisional equipartition rate between the parallel and perpendicular velocity components 
is calculated for a weakly correlated electron plasma that is immersed in a uniform magnetic 
field. Here, parallel and perpendicular refer to the direction of the magnetic field. The rate 
depends on the parameter z = (8 /r, )/v?, where r, = &?&/Oft, is the cyclotron radius and 
E = 2e’/T is twice the distance of closest approach. For a strongly magnetized plasma (i.e., 
I?) 1 ), the equipartition rate is exponentially small (y- exp [ - 5( 37-%) 215/6]). For a weakly 
magnetized plasma (i.e., iig I), the rate is the same as for an unmagnetized plasma except that 
r,/$ replaces 2, /8 in the Coulomb logarithm. (It is assumed here that r, <A,,; for r, > A,, 
the plasma is effectively unmagnetized.) This paper contains a numerical treatment that spans 
the intermediate regime z- 1, and connects onto asymptotic results in the two limits i?< 1 and 
ii% 1. Also, an improved asymptotic expression for the rate in the high-field limit is derived. 
The present theoretical results are in good agreement with recent measurements of the 
equipartition rate over eight decades in ii: and four decades in the scaled rate V/G% ‘, where n is 
the electron density and ‘ii = &?%. 

I. INTRODUCTION 
We consider a weakly correlated pure electron plasma 

that is immersed in a uniform magnetic field B, and is char- 
acterized by an anisotropic velocity distribution ( Tlr # r, ). 
Here, parallel ( ]I ) and perpendicular (I) are referring to the 
direction of the magnetic field. We calculate the collisional 
equipartition rate between the parallel and perpendicular ve- 
locity components, paying particular attention to the de- 
pendence on magnetic field strength. Formally, the rate, V, is 
defined through the relation dT, /dt = Y( T,, - T, ), where 
dT, /dt is interpreted as the rate of change of the mean per- 
pendicular kinetic energy and ( q, - TL ) is assumed to be 
small. In general this latter assumption is necessary for 
dT,/dt to be linear in ( q, - TL ). 

The equipartition rate does not depend on the magnetic 
field strength when the characteristic cyclotron radius 
r, = m//n, is large compared to the Debye length 
A, = ( T/4wte2) I’*; for this case a particle orbit is nearly a 
straight line over the range of the shielded interaction. Here, 
a, = eB/mc is the cyclotron frequency, n is the electron 
density, and we have set T = T,, c: T, . Since our purpose is to 
investigate the influence of the magnetic field on the rate, we 
consider only the opposite case (r, < /2,). For this case, the 
rate can be written as 

Y = nZZ *I(E), (1) 
where 5 = J?‘7;E is the thermal spread for the distribution of 
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relative velocities, z = 2e*/T is twice the classical distance 
of closest approach, and E = O,& fi = (8 /r, )/\/z is a mea- 
sure of magnetic field strength. In these definitions, 
p = m/2 is the reduced mass, and the odd factors of 2 are 
introduced to match notation used previously.’ The combi- 
nation of factors nI$ * is very nearly the equipartition rate for 
an unmagnetized plasma* [i.e., Y= (fi/15)nijii;2 
ln(&/~) 1, and the function Z(z) accounts for all depend- 
ence on magnetic field strength. 

Previous theory I-3 has provided asymptotic expressions 
for Z(ii) in the two limits i7$1 and i&< 1. We say that the 
plasma is strongly magnetized when il+ 1; in this limit, the 
collisional dynamics is constrained by a many-electron 
adiabatic invariant (the total cyclotron action, J 
= Xjimufi/2G2, 1, and the equipartition rate is exponentially 

small (i.e., Z(ii) -exp[ - 5(3n-z)2’5/6]).’ We say that the 
plasma is weakly magnetized when z< 1; in this limit, the 
equipartition rate is the same as for an unmagnetized plas- 
ma,2 except that r, replaces /2, in the Coulomb logarithm’ 
[i.e., ln(R,/i;) -+ln(r,/z)]. In our notation, this implies 
that Z(E) -In(z). 

This paper contains a numerical calculation that spans 
the intermediate regime F- 1 and matches onto asymptotic 
formulas in the two limits i+ 1 and 7ig 1. In Sec. II, a Boltz- 
mann-like collision operator is used to obtain an integral 
expression for the rate. This reduces the problem of calculat- 
ing the rate to the problem of calculating AE, , the change in 
the perpendicular kinetic energy that occurs during an iso- 
lated binary collision. In general, an analytic expression for 
AE, cannot be obtained. In Sec. III, numerical solutions for 
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AE, are obtained for many initial conditions chosen at ran- 
dom, and the integral expression is evaluated by Monte 
Carlo techniques. 

The paper also contains a new analytic result. In Sec. IV, 
we derive an improved asymptotic formula for the rate in the 
large field limit K> 1. A solution for AE, is obtained as an 
asymptotic expansion and is then substituted into the inte- 
gral expression for the rate. After substantial algebra and 
some numerical integrations one obtains the large Z asymp- 
totic result 

I(E) zexp[ - 5(3K)2’5/6]{( 1.83)Z-“I5 

+ (20.9)ii- “‘I5 + (0.347)Z - 13’15 

+ (87.8)Z IS/l5 + (6*33)~- 17/15 + O(Z- 19/“)}* 

(2) 
The exponential is the same as was obtained previously,’ but 
the algebraic factor in curly brackets is different and is more 
accurate. Note that the second and fourth terms enter with 
surprisingly large numerical coefficients; it is necessary to 
retain these higher-order terms to obtain good agreement 
with the numerical results. Figure 2 in Sec. III shows a com- 
parison ofboth the new asymptotic formula and the previous 
asymptotic formula to the numerical results. 

In recent experiments4 with magnetically confined plas- 
mas, the equipartition rate was measured over a wide range 
in magnetic field strength and temperature, corresponding 
to a range of K values from ii= 10 - * to 102. Our theoretical 
results agree with the experimental results to within the esti- 
mated experimental error over this whole range of ii. In fact, 
it was the existence of the experimental results for intermedi- 
ate field strength Z- 1 that motivated the theory. In addi- 
tion, a previous experiment5 measured the equipartition rate 
overa rangeofKvalues fromlcz low6 to 3 X 10 - 5. An extra- 
polation of the numerical results based on the theory of Ref. 
3 agrees well with these additional experimental results. Fig- 
ure 3 in Sec. III shows a comparison of our theoretical results 
to experimental measurement over eight decades in ii (i.e., 
il= lo-6to lo*). 

II. INTEGRAL EXPRESSION FOR THE EQUIPARTITION 
RATE 

In this section, a Boltzmann-like collision operator’*6 is 
used to obtain an integral expression for the equipartition 
rate. The reader may be surprised at the use of such an opera- 
tor for a problem in plasma kinetic theory, since the operator 
does not include the effect of Debye shielding.’ However, 
the magnetic field produces a kind of dynamical shielding on 
a length scale that is shorter than the Debye length, so it is 
not a problem that the Boltzmann operator omits Debye 
shielding. 

The dynamical screening is a consequence of the adiaba- 
tic invariant discussed in Ref. 1. For a collision in which 
R,r) 1, where r is the duration of the collision, the perpen- 
dicular kinetic energy changes by an exponentially small 
amount [i.e., AE, -exp( - &T)]. The time Q- is of order 
r- r,/u, where r, = minlr, - r2 ( is the minimum separa- 
tion between the two electrons during the collision and u is a 
characteristic relative velocity. Thus, the quantity fiR,7- 

-C&r,/v is large and the dynamical shielding is active 
when r,,, > r, = m/n,. On energetic grounds two elec- 
trons cannot get much closer than 5 = 2e’/T; so the dynami- 
cal shielding is active for all collisions in a plasma with K% 1 
(i.e., 5 g r, ). This is the reason that the equipartition rate is 
exponentially small for such a plasma. Also, one can see that 
the most effective collisions in producing equipartition for 
such a plasma are close collisions (i.e., r,,, = b ) . Now let us 
turn our attention to the regime where K < 1 (i.e., r, > 5 ). 
Here, there are some collisions where the dynamical shield- 
ing is not active (and AE, is large), but for all collisions with 
rm > rc the shielding is active. Consequently, these latter 
collisions have negligible effect. Both b and r, are assumed 
here to be small compared to /2, (5 &lo for a weakly corre- 
lated plasma and r, < il, by hypothesis) ; so Debye shielding 
plays a negligible role. 

Another way to look at this is to realize that the Ros- 
toker collision operator* (the analog of the Lenard-Belescu 
operator’ for a magnetized plasma) provides a correct de- 
scription for the large impact parameter collisions where 
Debye shielding is most important. Debye shielding enters 
this equation through the plasma dielectric function. By us- 
ing the fact that r, <il,, one can argue that the dielectric 
function is unity with a correction of order (r,/A, )*. We 
replace the dielectric function with unity in our analysis and 
thereby neglect the small effect of Debye shielding. 

The Boltzmann-like operator can be written as 

$(“,,I) =~m2~pQJdv21i*(v2 -v,) 

x[f(v;)f(v;) -fWf(v,)], (3) 
wheref( v,t) is the electron velocity distribution and i is the 
direction of the magnetic field.’ To understand the notation 
used, it is useful to imagine that a coordinate system is estab- 
lished on electron 1 and that planes are defined at z = + Z, 
where I is much larger than the maximum of 5 and r,. A 
collision is considered to begin when electron 2 passes into 
the region between the planes and to end when it passes out 
of the region. In the usual manner, the velocities (vi ,v; ) 
evolve into (v, ,v,) during a collision. The quantity 
p = IP)( (r2 - r,) ] is the transverse separation between the 
electrons at the beginning of a collision; one can think ofp as 
a kind of impact parameter and of 12~~ dp as an integral 
over the impact parameter (or scattering cross section). The 
factor I%( v1 - v2 ) 1 is necessary to give the flux of electrons 
2 incident on either one of the planes. Because of the magnet- 
ic field, electron 2 can interact with electron 1 only by first 
passing through one of the planes. Also, the dynamical 
shielding will provide a natural cutoff on the integral overp. 

The rate of change of the mean perpendicular kinetic 
energy is given by 

dT, -= dv, dt s (4) 

Using Eq. (3) to evaluate af /at yields the expression 
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where the distributions in the brackets are assumed to be of 
the form 

where the integral over d V has been carried out and 

f(V) =($?L)“‘(L!&)exp( -~-!&). 

(6) 
By using detailed balance, Eq. (5) can be rewritten as 

s=$l*2npdpsdv, ~dv,(AE#*(v, -v,)l 

x [ f($ lf(6) -f(v, )f(v2 I] f (7) 
where 

m4 r2 

AE, =- 
mu;: mull 2 +$L---- 

2 2 
(8) 

is the change in the perpendicular kinetic energy that occurs 
during a collision. 

It is useful to change variables from (v, ,v2 ) to (V,v), 
where V = (v, + v, )/2 is the center of mass velocity and 
v = (v, - v, ) is the relative velocity. First let us note that 
the binary dynamics separates under this change of vari- 
ables. The equations of motion for the two interacting elec- 
trons are 

dv, e2 (r, - r, 1 
~+Q,v,xi=- 

m Ir, - r2 I3 ’ 
(9) 

dv, e2 (r2-r,) ~+R,v,Xi=- 
m Ir, -r213 ’ 

(10) 

By adding and subtracting these two equations, we obtain 
separate equations for the center of mass motion and for the 
relative motion, 

g+ c&vx4=0, 

~+n,vxh2L, 
P Id3 

(11 

(12) 

Here, r = r2 - r, is the relative position vector and 
p = m/2 is the reduced mass. The center of mass motion is 
simply motion in a uniform B field, so it follows triviahy that 
IV; j = IV, 1 and IV: / = IV, I. The solution for the relative 
motion is not trivial, but conservation of energy guarantees 
that ,uv’*/2 = ,uuu*/~. From these relations and the relations 

mu6 EL=--- + mu& 
2 

-=- ~, 2 
pv: + 2mV: 

2 2 

mu$ mu:ll ___ 
ENr 2 +2= 

z.4 + 2mVi 
2 2 

, 

it follows that 

AE, = - AE,, = A(,u4,‘2). (14) 
By carrying out the change of variables and by using the 

relation dv, dv, = d Vdv as well as Eqs. ( 13) and ( 14), Eq. 
(7) can be rewritten in the form 

-$=Tl” Z~pdp~dvlv,,IA(~)~,(u,,,u,) 

x[exp[(-$-$-)A($-)] - 1)) (15) 

is the distribution of relative velocities. Finally, to first order 
in the small quantity ( T,, - Tl ) we obtain the rate equation 
dT,/dt = v( I;, - TL ), where the rate Y is given by the inte- 
gral expression 

xfr (q Pi I- 
In this expression, one may set T, z q, = T. 

(17) 

Ill. NUMERICAL CALCULATION OF THE 
EQUIPARTITION RATE 

Equation (17) reduces the problem of calculating the 
equipartition rate to the problem of solving Eq. (12) for 
A(,u$ /2). In general this equation has only two constants of 
the motion, the energy, and the canonical angular momen- 
tum, so an analytic solution is not possible. In this section, 
Eq. ( 12) is solved numerically for many initial conditions 
chosen at random, and the integral in Eq. ( 17) is evaluated 
by Monte Carlo techniques. 

In terms of the scaled variables 

u = v/z, q = r/g s= t(G), 
Eq. (12) takes the form 

(18) 

1 rl $+ti,i--, 
2 ItI3 

(19) 

where u = dq/ds, and Eq. (17) takes the form 
Y = n6 2X( 2) , where 

~(ii)=~~h-fv,~-u+‘u~ 

X $I+(+) 

We evaluate this integral with two completely separate 
Monte Carlo calculations. 

The first of these introduces an arbitrary weighting 
function W(u,, ,~~,Jl,v~) which is used to define the trans- 
formation *OS’ ’ 

(q r@i ,$,,rll) -+ (Xl ,x2 9x3 ,x4 1, 

where 

x, =+[dq, drn&, l- du, lvd$ 

x w q rU1 ,$,,rlr 1 t @Ial 

xz =*I”‘& g-6 SO2’dWO+wh). (21b) 

zrr 
W WO+U~,J/~~ 1, (21c) 
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1 + 
x4 = - J 4 0 w wq 9~*,$srl1), (21d) 

and 

A, =j,-,-du,, I,-dql I,-& ~%bWC$uh), 

Wa) 

A~(?,) =6“ d’i’~ lrn& ~rd$W(u,,,u,,$,~J, (22b) 

2rr 

A, (u,,JI~ 1 = dlC, W( u,, +1 ,hrlL 1, (22c) 

J 
2a 

A~(~JIL,u~ 1 = W Wu,, 7~1 ,lc,vl). (22d) o 
One can easily show that the Jacobian for this transforma- 
tion is given by 

ax, ,x2 ,x3 9x4 > w q 41 r&771 1 
W+w4q,) = A, ’ (23) 

so Eq. (20) takes the form 

I(F) = --&I,‘& 1’dxz I,‘4 I,‘dxa 

x qu1771e - II=/2 

wq 9~144rll) 
(24) 

If we choose 

W-~,,~L~,e-U2’2[A(~~/2)]2, (25) 
the integrand in Eq. (24) is reasonably uniform over the 
whole domain of integration, and an efficient Monte Carlo 
evaluation of the integral can then be obtained by choosing N 
sample points pi = (x, ,x2 ,x3 ,x, ) i at random in the domain 
of integration. The value of the integral is given by 

where Nis large enough that the average has converged, that 
is, that fluctuations in the average as Nis increased are negli- 
gible. 

The choice for Wrequires some knowledge of A (u: /2), 
but this knowledge need not be detailed. A good choice for 
W is one that captures the main features of expression (25) 
but is still simple enough that the integrals in transformation 
(2 1) can be carried out analytically. This provides for a rea- 
sonably rapid convergence and an efficient algorithm for 
choosing sample points. For the parameter regime ii > 1, we 
use an expression for A( U: /2) that is based on the large 7? 
asymptotic analysis of Sec. IV, and for the parameter regime 
ii < 1 we use an expression for A ( U: /2) that is based on inte- 
gration along unperturbed orbits. 

The integral expression for the rate was evaluated inde- 
pendently with a second Monte Carlo method. In this meth- 
od a sample point is chosen by the rejection method,” which 
allows the treatment of more realistic and complicated 
weighting functions, but is somewhat slower (particularly 
when the weighting function is peaked). Also, the orbit 
equation is solved with a fourth-order Runge-Kutta algo- 
rithm.” The results for the two methods are the same to 
within expected statistical error for the E values where both 
methods were applied. 

Table I lists values for I(ii) obtained with the integral 
transform method for i? values ranging from 10 - 4 to 104. 
The values of I(Z) obtained by use of the rejection method 
are shown in Table II. These data cover 7i values from 10’ to 
103. In Fig. 1 both sets of data are plotted versus 2 and are 
compared to asymptotic formulas for ii> 1 and i?< 1. The 
solid curve is the large j? asymptotic formula given in Eq. 
(2), and the dashed curve is the small 7? formula 

For a given set of random numbers (x I ,x2 ,x3 ,x4 ) i the - (G/15) ln( ct) .3 Here, C is a constant which we de- 
corresponding variables (u,, ,u, ,vL ,$) i specify the state of an termine numerically to be C = 0.333 (65). 
incident electron when it first crosses one of the two planes at Some words of explanation concerning the logarithmic 
v,, = f I/& Starting from this initial condition, orbit equa- dependence for small Z and our determination of the con- 
tion ( 19) is integrated forward using a Bulisch-Stoer algo- stant C = 0.333 (65) may be useful. First let us review how 
rithm” until the electron again crosses one of the two the logarithmic dependence comes about. For collisions 
planes, and A( uf/2) is calculated. The distance I must be characterized by 5 < rrn < r,, where r,,, = minlr, - r2 1 is the 

chosen to be large enough that a further increase in I does not 
significantly change the numerical result for the rate. Over 
most of the range in i?, this simply means that I must be many 
times larger than the maximum of 8 and r,. However, the 
orbit integration is particularly time consuming in the limit 
of large K, the cyclotron frequency is much larger than the 
frequency characterizing the duration of a collision, and the 
quantity to be calculated, A ( UT /2), is exponentially small. 
Consequently, special care must be taken in this limit. The 
adiabatic invariant is given by an asymptotic series, the first 
term of which is UT .I2 The higher-order terms are all zero at 
ql = + co,soAu, ’ is the change in the invariant when r~,, 
varies from + CO to - CO. However, at q,, = + Z/b, the 
higher-order terms are not zero. We assume that the adiaba- 
tic invariant (full asymptotic series) does not change signifi- 
cantly when T,, varies from -I- CO to Z/8 and then again when 
qll varies from - I /& to - 00. The change in U: as T,, varies 
from + co to - CO (i.e., Au: ) is then given by the change in 
the adiabatic invariant (full asymptotic series) as v,, varies 
from Z/z to - Z/z. This latter quantity must be calculated 
numerically. In practice, only one higher-order term is nec- 
essary to give the required accuracy. 

Also, the value of u,, at l;l,, = Z/6 must be related to the 
value of uII at T,, = 03. Here, one can approximate U: as 
constant and use conservation of energy to write 

u+o) -2@1/6)=:2/~. (27) 
This correction becomes important at large values of ii be- 
cause A( u:/2) depends exponentially on u,, ( 60 ). The 
Monte Carlo calculated values of I(Z) were found to be inde- 
pendent of reasonable changes in both the functional form of 
W and the parameters used in the integration of Eq. ( 19) 
(e.g., accuracy of the integration and the location of the 
plane at I /6). 
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TABLE I. Results of Monte Carlo calculation using the integral transform 
method. Statistical error in the last two significant figures is shown in paren- 
theses. 

1.00X 1o-4 
1.00x 10-J 
1.00x 1o-2 
1.00x 10-l 
3,33x10- 
9.99x10-l 
1.25 x loo 
2.50~ 10" 
5.00x loo 
1.25x 10’ 
2.50x 10’ 
5.00x10' 
1.00x lo* 
2.00x lo* 
5.00x lo2 
1.00x lo3 
2.00x103 
5.00x 10" 
1.00x lo4 

1.753(63)x10' 
1.335(44)X 10” 
9.26(45)x10-' 
5.90(36)x 10-l 
3.81(18)x10- 

1.927(46)x10-' 
1.572(38)x10-' 
8.17(16)x 1O-2 
3.34(20)x lo-* 
5.91(37)x10-3 
9.19(38)x lo+ 
7.42(27)x10-' 
2.74(13)x lo-” 
2.94(11)x10-x 
9.48(44)x10-'* 

2.527(61)x lO-‘5 
5.16(24)x 1O-2o 

1.531(57)x10-~~ 
2.90(50)xW3' 

minimum separation between the particles, the change in 
perpendicular energy A (us /2) can be calculated by integra- 
tion along unperturbed orbits, and the unperturbed orbits 
are nearly straight lines. Under this circumstance the dis- 
tance r,,, is very nearly the impact parameter as defined for a 
collision in an unmagnetized plasma. The contribution of 
these collisions to the integral expression for I(K) is 
(fi/lS).fdr,/r,, which is logarithmically divergent. In 
our numerical treatment the divergence is cut off at the up- 
per end (i.e., r, =rc ) by dynamical shielding and at the low- 
er end (i.e., r, -b ) by the repulsion of like charges. In terms 
of the two approximations, unperturbed orbits and straight 
line orbits, the first fails at the lower end and the second at 
the upper end. The previous work3 is based on integration 
along unperturbed orbits taking into account the magnetic 
field, so the upper cutoff arises naturally but the lower cutoff 
must be imposed in an ad hoc manner. The imposition of 
either cutoff in an ad hoc manner introduces an uncertainty 
in the argument of the logarithm, that is, the factor Cis not 
determined. In our numerical treatment, the dynamics auto- 
matically provides both cutoffs, so the constant C is deter- 
mined. The value C= 0.333(65) is obtained by matching 

TABLE II. Results of Monte Carlo calculation using the rejection method. 
Statistical error in the last two significant figures is shown in parentheses. 

ii- ml 

1.00x loo 
1.78X10° 
3.16~ 10' 
5.62x IO0 
1.00x 10’ 
1.78x10' 
3.16~ 10’ 
5.62x10' 
1.00x lo2 
3.16x10* 
1.00x lo3 

1.74(13)x10-' 
1.070(65)x 10-l 
6.34(47)x lo-’ 
2.90(22)x10-' 
9.54(75)x10-3 
2.70(19)x10-3 
4.58(36)x 1O-4 
4.73(36)x lO-s 
2.75(16)x lo+’ 
7.98(38)x lo-“’ 
2.56(19)x10-I5 

0 Integral Transform Method 
+ Rejection Method 

Large Magnetic Field 
Asymptotic Expression t 

10-20 I f I I I t I ,k , 
10-4 10-3 10-2 10-t too 10’ 102 103 104 

E 

FIG. 1, Monte Carlo evaluation of the integral I( ii) defined in Eq. (20), 
The evaluation via the integral transform method is shown as diamands 
(0) and via the rejection method is shown as crosses ( + ). The statistical 
uncertainty in the evaluation of the integral is approximately 5%. These 
results match on to the asymptotic formula of Ref. 3 (solid line) at small E 
and onto Eq. (2) (dashed line) at large ii. 

-&/15ln(ilC) to the numerical results for K<fO-‘. 
This fit curve is then found to agree with the Monte Carlo 
results to within statistical error over an even larger range, 
&l. 

The numerical results match onto both asymptotic re- 
sults quite well. From Fig. 1, one can see that the numerical 
results track the logarithmic dependence for i?< 1 and fall off 
exponentially in accord with the asymptotic formula for 
ii& 1. To make a more detailed comparison of the numerical 
results and the large i? asymptotic formula, we factor out the 
exponential dependence and plot I( ii) exp [ 5 ( 37S) “‘/6] vs 
ii. In Fig. 2, the points are numerical results, the solid curve 
is the new asymptotic formula given in Eq. (2), and the 
dashed curve is the previous asymptotic formula.’ One can 
see that the new formula is in much better agreement with 
the numerical results. 

Figure 3 shows a comparison of our numerical results to 
measured values of the equipartition rate. The solid curve is 
an interpolation of the Monte Carlo values for I(K), and the 
dashed curve is an extrapolation using the asymptotic for- 
mulaffii) = - (a/15) ln[ (0.333)7?1. Thepointsareex- 
perimental values for v/& 2, which according to theory 
should equal I(Z). The squares, crosses, and diamonds are 
results obtained by Beck et aL4 on a magnetically confined 
pure electron plasma that is cooled to the cryogenic tempera- 
ture range by cyclotron radiation. The rate was measured for 
three magnetic field strengths (30, 40, and 60 kG corre- 
sponding to the squares, crosses, and diamonds, respective- 
ly) and for a series of temperatures ranging from 30 to lo4 K; 
this corresponds to a range of Zvalues from 10 - 2 to lo*. The 
electron density was near n = 8X 108/cm3. There is quite 
good overall agreement between the theory and the experi- 
ment; the discrepancy between the measured values and the 
theory at large ii may be due to a 30% systematic error in the 
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0.1 

FIG. 2. Monte Carlo evaluation of 107) for large ii. The constant in the 
exponential factor multiplying the ordinate is E = (5/6) ( 37r)2’5. The inte- 
gral transform method results are shown as diamonds (0) and the rejection 
method results are shown as crosses ( + ). The statistical uncertainty is 
approximately 5% (the size of the symbols) unless otherwise indicated. 
The solid line is a plot of the new asymptotic formula Eq. (2) and the dashed 
line a plot of the previous asymptotic prediction of Ref. 1. 

temperature measurement. Such an error is large enough to 
account for the discrepancy and would not be unreasonable 
for the diagnostic procedure used. Finally, the circles are 
results obtained by Hyatt et aZ.5 from a closely related set of 
experiments also done with a magnetically confined pure 
electron plasma, but in an apparatus that is at room tempera- 
ture with a magnetic field of 280 G. The full data set, en- 
larged by the room temperature experimental data, allows us 
to compare theory and experiment over a range of eight dec- 
ades in i?. 

lo 7’ 
1 -4w----.- 

t 

Hyatt. Driscoll 
and Yalmberg 

B = 280 G 

t 

T = 3.000 to 
30,000 OK 

1 I I I I I I I 
10-C 10-s 10-4 10-3 10-Z 10-l 1 101 102 

K 

Beck, Fajans Beck, Fajans 
and Malmberg and Malmberg 

El = 30 to 80 kG El = 30 to 80 kG 

T = 30 to lo4 ‘K T = 30 to lo4 ‘K 

FIG. 3. Experimental results compared to the Monte Carlo evaluation of 
I(Z). Shown are two sets of experiments. The first is the cryogenic experi- 
ment of Ref. 4. The experiment was conducted at three values of the mag- 
netic field ( + = 30 LG, 0 = 40 kG, and 0 = 60 kG). The second is the 
room temperature experiment of Ref. 5, displayed as circles (0). The solid 
curve is an interpolation of the results of Table I. The dashed curve is an 
extrapolation using the formula - (G/15) In[ (0.333)i?]. 

IV. ASYMPTOTIC EA?RESSION FOR THE 
EQUIPARTITION RATE IN THE LIMIT i+ 1 

In this section, we obtain the improved asymptotic for- 
mula for I(K) in the large ii limit that was written down in 
Eq. (2). As was mentioned earlier, the exponential depend- 
ence is the same as was obtained previously,’ but the alge- 
braic factor is different and more accurate; it is correct to 
higher order as an asymptotic expansion based on the small- 
ness of l/Z. The second and fourth terms in the expansion 
enter with surprisingly large numerical coefficients, and the 
first term does not dominate until K> 105, which is beyond 
the largest value of i? considered in the numerical calcula- 
tions. It is necessary to retain the higher-order terms to ob- 
tain good agreement with the numerical results. We believe 
that the numerical coefficients in the expansion are reasona- 
bly accurate, but further refinement of the calculation would 
lead to some modification of these coefficients. 

The first step is to obtain a more accurate asymptotic 
result for the energy exchange AE;. To this end we rewrite 
Eq. (12) for the relative motion in Hamiltonian form by 
using 

ff(r,p,;z,p,;Q,~~) = 
[pe - W%/2)r2]2 

2pr2 
+p’ 

2P 

(28) 

where (r&z) are cylindrical coordinates and (pr,ps ,pZ ) are 
the conjugate momenta. Since 8 is cyclic, pe is a constant of 
the motion. We can reduce the degrees of freedom to two and 
write the Hamiltonian as 

H(r,p,;z,p,) = (pY2~) + (PI/~/J) + V(r,z), (29) 
where 

and r, =,/m. It is useful to approximate V( r,z) as a 
harmonic potential in r at constant z by Taylor expanding; 
this gives 

V(r,z) =: V, (z) + [@12(z)/2] [r - rg (z) ] 2, (31) 

av 
dr r=rg =0, V,(z) = V[r,W,z] 

and 

As z goes to infinity Cl(z) approaches R, and rg (z) ap- 
proaches r, . One can identify rg (z) as the guiding center, 
V, (z) as the potential at the guiding center and R(z) as the 
effective cyclotron frequency. 

We have neglected terms in the Taylor expansion of 
V( r,z) that are of higher than quadratic order in (r - rg ) . It 
is found in the Appendix that the cubic term in the Taylor 
expansion contributes to terms of order i? - “‘15. These terms 
are not significant when the asymptotic expression is com- 
pared to the numerical results. 
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It is useful to change independent variables from t to z. 
This is effected by using Hamilton’s principle’3 

o=s 
One can identify the new Hamiltonian as 

H’(r,p,;z) = -pz = f H- V,(z) -q [r-rg(z)]2-cj, * ‘W’ 

where ( r,p, ) and ( t, - H) are canonically conjugate coordi- 
nates and momenta. Since there is no explicit t dependence in 
H ‘, the momentum H is a constant of the motion. 

By using the generating function 
Pr I ,. 

S(P,r;z) = J+=,x~n-\l~P- (r’-rg)2dr’, (34) 

we introduce the action angle variables 

H - v, - (pY2pl 
cl (35a) 

and 

t/ = sin - ’ [JGEQl(r--r,)], (3%) 
and obtain the new Hamiltonian H’ = -pZ + bJS/dz~,,,. 
The generating function can be rewritten as 

St $,P) = P sin $ cos * + PI/, (36) 
so the needed partial derivative is given by 

as 
-z r.P I - 2Pcos2 @q az $ (37) 

where a+iazl,,p cos +!J is easily evaluated from 
sin $ = dv ( r - rg ) . The new Hamiltonian is then 

H”(P,$;z) = &/2/&H- Vg - RP) -Jm% 

Xcos$+-$sin2$$(lnfi). (38) 

We need to solve Hamilton’s equations 

dP 
-= -&ZiF~sin$--Pcos2* d(rzn) , dz 

(39a) 

d$ -= I*fl 
dz T 

J2/.6(H- v, -fiP) - 
d (In a) 

dz ’ 
(39b) 

in order to obtain the energy exchange AE, = Cl, AP, and to 
this end we introduce a perturbative expansion 

p=pco)+p”‘+ *.. 

and 
$ = pN + $‘I) + . . . . 

The expansion parameter is r,/z, where r : = 4mc2/B 2 
= 2r fz. During the collision, the expansion parameter gets 

(32) 

(33) 

no larger than r,/b = (u,lo/Q5)2’3-g 1, where 
bre*/(puf,/2). However, we will deform the z contour 
used to evaluate AE, from the true trajectory to one which 
encircles the branch point of the integrand. On the deformed 
contour, r* /z will be oforder unity. Ahhough the contribu- 
tion of higher order AP (j) will not be algebraically smaller, 
they will be numerically smaller. We refer one to the Appen- 
dix where we show that AP”‘- l/($j - +)! 

Turning our attention to finding the equations for P (j) 
and $(j), we first note that dr,/dz and dWdz are both of 
fourth order in the expansion parameter. This implies, in 
conjunction with Eqs. (39), that dP ( “‘/dz = 0 and 
dtl,’ j’/dz = 0 if j#O,4,8 ,... . In addition one can see that 
dP ‘O’/dz = 0, 

dp’4’= 
dz 

-J 

and 

_ p (0) cos 2+co) d (t;l”’ , (4-W 

<g(O) - -+ Pfi 
dz J2,u(H - V, - i-LPco)) . 

tab) 

Since dP (O’/dz = 0, we can set P (‘) = P,, , the precollision 
value. We will want to integrate Eq. (40a) to find AP (4). The 
first term on the right-hand side of Eq. (4Oa) gives a contri- 
bution to AP (4) of the form of an integral of ei’@‘O’ times a 
slowly varying function of 21, (‘I. The second term gives an 
integral of e12d’o’ times a slowly varying function of $‘“‘. This 
is an exponentially smaller contribution to APc4’ compared 
to the first term. Hence we drop the second term on the right- 
hand side and write 

dp= 
dz (41a) 

and 

d$(‘) -ET PQ 
dz ,/2/&H- V, - CkP,) ’ 

(41b) 

Since AP (‘I = 0 over the course of a collision, 
we let APzAPC4’ with an estimated error of order 
AP’8’/AP(4)-2!/(14/3)!z lo-‘. IntegrationofEq. (41b) 
gives 

@‘“’ = $0 + a TB(z), (42) 
where q. is the initial gyroangle, cz is the constant 
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I rm@) Iz-planel 
r* c / Re(4 

r0 
Z-r 

FIG. 4. Contour in thezplane used to find AE,. Here, zT is the turning point 
wherep, = 0. 

a= + ,uuR dz 
J2p(H- v* -flP,) ’ 

(43) 

zr is the turning point where H = Vg (zT) + P,sl(zr), and 

/d-l (z’)dz’ 
J2/QH- V,(z’, -P&W] . 

(44) 

Substitution of the expression for $‘“’ given in Eq. (42) into 
Eq. (41a) and integration along the contour shown in Fig. 4 
gives 

A2E1 z@A~P’~) = 4Pos1~Dcos2(~o + a), 
where 

(45) 

(46) 

The character of contour integral (46) is what one nor- 
mally encounters when dealing with the breaking of adiaba- 
tic invariants.14 When evaluated along the curve in Fig. 4 
(i.e., along the true z trajectory), the integrand consists of a 
slowly varying factor fl drJdz times a rapid oscillating 
factor e@. To evaluate such an integral, one deforms the con- 
tour into the complex plane so that the rapid oscillating fac- 
tor becomes exponentially small. This continuation is ex- 
tended until a singularity of the integrand is encountered, as 
shown in Fig. 5. For our case, the scale length for this singu- 
larity is the larger of r* and r,. One can identify these as the 
germaine length scales by determining on what length scale 
the two terms on the right-hand side of Eq. (30), the expres- 
sion for V( r,z) , are of the same order of magnitude. 

I ImCz) Iz-planel 
1 r, 

c 

/ Re(z) 
r0 ZT 

FIG. 5. Deformation of contour in the z plane used to find AE,. 

In the Appendix we find p(z) as a power series expan- 
sion in (u,,o/R,b)2’3 and ( v,,,/u,,~ )* whose coefficients are 
functions of ro/r* . Since both v,,,/0J<< 1 and u,,/v,,, 4 1 
when the integrand in Eq. (20) gives a significant contribu- 
tion to I(K> l), we can expand e@ in a power series. This 
series is substituted into Eq. (46)) the contour integral done, 
and the result squared to obtain A2E,. We then substitute 
the power series for A2E1 into Eq. (20) and do the integrals 
to obtain the asymptotic expression shown in Eq. (2). 
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APPENDIX: EVALUATION OF THE INTEGRALS IN THE 
ASYMPTOTIC EXPRESSION FOR /(ii) 

To evaluate the expression for AE, found in Eq. (45 ), it 
is convenient to introduce the variables 5~ (u~~/u,,~ )=, 
E= (f&b/q0 ) - 2’3, y” (ro/r* )3’2 , and c = (z/r, ) , where 
b=2e2/,uu~, and r : = 8,uc*/B ‘. We also define the func- 
tions 

f(r;i) -rgho, (Al) 
h(y;i) = (n/a,)=, (AZ) 
g(y,t) =Et(Vg/(pJ$J/2)), (A3) 

and 

scr,!J;i, =g(y;iVCl + ( [ 1 - h 1’2(y;i) 11. (‘44) 
The functions can all be expressed as convergent power se- 
riesin?-l/t fort)max(l,+‘3).Equation(46)cannowbe 
rewritten as 

D =NM 

IS 2 c 
exp[il(w,S;h 1 

2 
X/j “4(y;i) ydr , 

where 

s 

I 

iP(q& = 
h”2(y;ir)g-1’2(~t’)(r’)“2dt’ 

’ t’= ly Jl - Et’g- ‘(y,,5;;f ‘) 
C-46) 

S( y&i,) = et*, and the contour C is shown in Fig. 6. 
Let us first work on the evaluation of integral in the 

definition of ifi. Make the change of variable from t to s de- 
fined by 

SEEM- ‘(y&i). (A7) 
The function g* is defined to be the inverse of g, that is, 

S = ig( y&i) (A81 
is equivalent to 

i = sg*(y,g;S), (A9) 
where S = E/S. Since we can expand g in a convergent power 
series in ?, we can do a series inversion to find the power 
series for g*. This allows us to write Eq. (A6) in the form 
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ImCt) It-plane1 

1 c 
/* 5 \- IWO 

YU3 t,- l/s >>l 

FIG. 6. Contour in the t plane used to find D. The parameter t7 is of order 
l/e which is much greater than 1 for large values of the magnetic field. 

1 
ip = -E-3/= s ( h [y;@*(y,m 1 

s=6 1 +{{l -h ““[~;@*(r,f;s)ll > 
l/2 

x [g*(y,s;al -2 g*(Y&a 4-5 ( 
dg* (Y&a do > 

s”~ ds 
xx’ 

(AlO) 

where S= ~tg - ’ (y&i). The part of the integrand written as 
a function of S can be expanded into a power series in S with 
the expansion coefficients a, ( r,Q. Substituting this power 
series into Eq. (AlO) and exchanging the summation and 
integration gives us 

@  = - E- 312 2 %(y,&“~‘/‘~. (All) 
n-0 s 

The integral can be done by changing the variable of integra- 
tion to II = ( 1 - s)/( 1 - S) and applying the integral repre- 
sentation of the hypergeometric functionI 

24 (a,b;c;z) T(c) s I = l-(b)T(c- b) o 
sb-‘(1 -~)~-~--l(l -zs)-LIds, 

(A121 
leaving us with 

$3 zz - E-w.2 2 a, 
F-=0 

(~,Y,S)E”Z( 1 - f5)“2 

~24 ( ++n,-,-, * .3.l--s. 
2 2 > 

(Al3) 

Application of the linear transformation formula” 

24 (a&;~) 
= r(c)r(c - a - 6) 

r(c - a)ryc - b) 
ZFl (a,b;a + b - c f- 1;l - z) 

+ (1 -z)‘- o-brw(~fb-~) 
nav.0 

x,F,(c-u,c-bb;c-u-b+ 1;l -z), (A14) 
and use of the fact that a, = 1 and a, = 0, yields 

ifi = - y - 2 a, ( r,Qr - 3/2&3/z - n( 1 _ 8) ~2 
n=O 

2 
X- 

2n - 3 > 
, (A151 
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where KEE- 3’2. Expanding ( 1 - S) ‘/221;; (2 - n,f; 2 - n; 
S) in a power series in S and substituting S = c?tg - ’ gives 

ip = - 7 - 2 @t k + 3~2 
k=O 

n$oGx (?‘&bnki” 

x [@y&i) 1” - k - 3/2, (A16) 
where 

k (2---n)k-m( -41, 
b,,E2 2 

2n-3 m=O (:---n),-,m! * 
(Al7) 

As a last step, expand (2)” - k - 3’2 in a power series such that 

Oc [g( y,g;i) ]j - 3/2 = jgo cji CY4Ji i (A181 

and define 

Fk (y&i) = - 2 dk, (I”,<)? ‘, 
i=o 

where 

(A191 

dki(Y&t)= 2 a,(y,%)b,kC,-k,i--((Y,~). 
n=O 

(A201 

One can further reduce Fk to the form 

Fk (y&i) = 5 Fkl @ ii) 5 
I-0 0 

I 
(A211 

because of the structure of dki ( ~,LJ’). The structure was found 
by use of the symbolic algebra package MATHEMATICA’~ for 
k = 0,..,,4. Since we only use k = 0,1,2 terms, such a reduc- 
tion in Fk is justified for our purposes. This gives us the final 
form for if3, namely 

@= -7 
-I- 2 i ckr: ‘i k - 3f+ ““Fk, ( y;i). (A22) 

k=OI=O 

Now substitute ij3 into Eq. (A5) to obtain 

D = (,u&r;/2)e - rKIJ(~,c;y) [*, 
where we have defined 

(A23) 

J( E&9 = 
s ( 

exp i i ekg ‘t k - “+ 3’2Fkl ( y;“t) 
kzOi=O 

;h l/4(y;;) df(p & 

> 

(A241 

For large values of the magnetic field, we will only need to 
know J where E&(< 1. Therefore, we can expand the expo- 
nential to give 

f(&-;y) = 2 i Ekg’&&‘), 
k=01=0 

(A251 

where 

Bki(y)= I G&;t) exp[t3’2F,(y;i)] 

zh l/4(y;i) df(??i) dt 
dt (A261 

and 

G,(y;i)rl, (A27a) 

G,, (y;i) = t 5”“Fto ( y;?), (A27b) 

G,,(y;?)rt7’*F,,(~;i) +jt5Ffo(~i), (A27c) 
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G,, (r;i) =I - "*F,, (xi;?), (A27d) 

etc. This will allow us to write 

mmw = kzo ,~o&~k,cr,. C-428) 

where 

A,,(y)=B~(yV, (A29a) 

A,,(y) ‘240 crmo (YW2, (A29b) 

~,,w=[~~,,w3cdy~ +B:ow]Y29 (A29c) 

A,, (Y) =2B,, wBoo(y)“/2~ (A29d) 

etc. Finally we can write the change in the perpendicular 
energy as 

A2E, = (,u&,) ?f co?(&, +a)e-” 2 i Ekc’&(y). 
( > r. k=Ol=O 

(A30) 
We substitute this expression into Eq. (20) to obtain 

I(Z) = & kIgo ,io (Irn +4(y)) 

X 
(I 

m 27r 
21+ 3 

Ul e 
- a2 du, 

>CT 
dlC,cos2($ + a) 

0 0 1 

m 
dKK-- s/3 + (2/3)([- k) 

(A3I) 

Defining A,, G ( J;dy/y”3)Ak, (y) and doing the y, uI, and 
I+/! integrals gives 

I(E) = 5 2 i A,,2’r(Z+ 2)ii-2”3 
k=O I=0 

dKK- 5/3 + (2/3)(1-k) 

-r,+- ’ 2’3 

2K * 0 II 
(A321 

Evaluation of the K integral via the method of steepest de- 
scent as ii- Q) leads us to the asymptotic series 

I(Z) + e 
- (5/6)(3n+” Jz;; m k - 

E-cc -ii- k&C, ,gC, nzt, 

XAk,2’r(Z+2)r(n+~)e2, ($+t(k-0) 

Xi?-- 7/‘5 - (2/‘5)(2k + 31+ 3n) 
, (A33) 

where 

w*z (n-/x) + +x2’” - ,(3,)*‘5 (A34) 
and 

%fim2= 2 ek(P)ak. 
k-0 

Keeping terms to order K- 19’15, one finds that 

(A35) 

1 
ReW 

y 213 
tT 

FIG. 7. Contour in the t plane used in the numerical contour integration of 
B,/(Y). 

I(E 
2rr( 3~) “5 

+ 
ii-m 3JJ 

/@z-7/15 + 2d$)3’s AloF- ‘1/‘5 

+ 
14( 3n)4’5 

A,~- 13’15 ; 2tiA z-- ‘5/‘5 
1356 fi *O 

+ 8(3~)~‘~ 

1356 
(7/t,, + 15A,,)i7-‘7”5 + O(7i-‘9”5). 

(A36) 
We have now reduced the problem to that of finding a 

numerical value for the A,,. We do this by first finding the 
power series expansions for the functionsf, h, and g to 30th 
order in i with the help of the symbolic algebra package 
MATHEMATICA. ‘6 The large number of terms were needed 
to obtain accuracy in the A,, of at least one part in 104. It is 
then a straightforward process to find power series expan- 
sions for the Fk, (r;?), substitute them into the integral ex- 
pressions for B,, ( y) given in Eq. (A26), and then to numeri- 
cally evaluate the integrals along the contour shown in Fig. 
7. We choose this particular deformation of the contour to 
reduce the oscillations of the factor exp [ r 3’2Fw ( y;i) ] in the 
integrand. We cannot take the contour any closer to the ori- 
gin than max( 1,y”) because of singularities in the inte- 
grand which are manifested by the series expansions no long- 
er converging. Once the y dependence of B,, ( y) is found by 
doing many numerical integrations of Eq. (A26), each for a 
different value of y; we obtain a graph of A,, ( y) by the sim- 
ple algebraic combination of the B,, ( y) given in Eqs. (A29). 
The results are shown in Fig. 8, which displays all the A,, ( y) 
needed to evaluate I(K) to iT - 19’15 order. All four displayed 
functions have the same basic functional form: they peak at 
y=: 1, scale as 9 at small values of 3: and go to zero exponen- 
tially in y at large values of y. It is now a simple matter to 
numerically integrate these functions to find A,,. When the 
results are substituted into Eq. (A36) we are left with the 
asymptotic formula for I(K) shown in Eq. (2). 

We now turn our attention to an estimation of the error 
we are making by only calculating AP (4’. This is most easily 
seen by examining the expression for Bkl(y) given in Eq. 

(A26). Since the A,, are just integrated algebraic combina- 
tions of the B,, ( y), this is sufficient to estimate the error of 
the A,, . We start by noting that the integral for Bk, ( y) is of 
the form 
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I I I 
0 2 4 6 a 

Y 

FIG. 8. The functions A,,(y) which show the y = (r,,/r, )j/* dependence 
of AE, . See I!$. (A30) for the exact relationship between A,,(y) and AE,. 

B,, ( y) - 
s 

e”“t - 4 + Q) dt, 
C 

(A371 

where Gk, ( r;i) -2 - ‘*’ as i-+0. The nk, can easily be found 
by examination of the expressions for Gkl (-?;i) given in Eqs. 
(A27). One should remember that Fki (y;t) - 1, h(y;>) - 1, 
and df( r;?) /dt - i 4 as 7 - 0. This will aid one in finding the 
values of n&.[ and the form of Eq. (A37). The fact that 
df /dt -i 4 is why the AP we are calculating is of fourth or- 
der; remember that ? = r* /z. The difference in the calcula- 
tion of B k;“‘(y) which contributes to AP Cm) is the replace- 
ment of the “4” in Eq. (A37) with m. We can easily evaluate 
the integral on the right-hand side of Fq. (A37). Doing this 
we find that 

B@‘(y)-l/I(2m/3 - 2n,,/3 + l/3). (A381 
By using Eq. (A38), we can estimate that the coefficient of 
E - 7”5 in the asymptotic expression for I(F), Eq. (2 ), would 
be changed by about 1% by including the higher-order cor- 
rections to AP. The expected changes in all the coefficients 
are shown in the following expression of Eq. (2) : 
f(jqe(5/6N3rrii)“5 

~(1.83 t l%)ii-7”5 + (20.9 f lO%)ir- ‘*“* 

+ (0.347 & l%)i;l- 13”’ + (87.8 + 4O%)ii- 15”’ 

+ (6.68 & lo%)ii- ‘7’15. (A391 

The other approximation we need to examine is neglect- 
ing the terms of order (r - rg)3 and higher in the Taylor 
expansion of V( I;Z) , Eq. ( 30) + One can see how these terms 
will effect the final result for I(Z) by including the cubic 
term and repeating the calculation. When this is done one 
finds that AP (4) is changed by an amount A( AP (41 ), which 
is smaher than AP (4’ by the ratio 

A(APc4’) PO 

AP’4’ --- ma,r : 

Including this correction will modify Akl with k,I) 1. Hence, 
keeping higher-order terms in the Taylor expansion will 
modify terms in the asymptotic expression for I(Z) of order 
K - - 17’15 or greater; terms which are small at the large values 
of iT of interest to us. 
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