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An extended Rayleigh model of bubble evolution
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An extended Rayleigh model for laser generated bubbles in water and soft tissue is presented. This
model includes surface tension, viscosity, a realistic equation of state, material strength and failure,
stress wave emission, and linear growth of interface instabilities. The model is validated by
comparison to detailed compressible hydrodynamic simulations using\tige computer program.

The purpose of this study is to investigate the use of the extended Rayleigh model as a much faster
and simpler substitute for the detailed hydrodynamic simulations when only limited information is
needed. It is also meant to benchmark the hydrosimulations and highlight the relevant physics. The
extended Rayleigh model and the hydrosimulations are compared using both a 1D spherical
geometry with a bubble in the center and a 2D cylindrical geometry of a laser fiber immersed in
water with a bubble formed at the end of the fiber. Studies are done to test the validity of the
material strength and failure, stress wave emission, and the interface instability terms in the
extended Rayleigh model. The resulting bubble radii, material damage radii, the emitted stress wave
energies, and the size of the interface distortions are compared. Many of the trends found in the
hydrosimulations are illuminated by the extended Rayleigh model owing to its relative simplicity.
The extended Rayleigh model is very useful since it is accurate over a large range of parameters and
it is computationally much faster than the hydrosimulations. 2@1 American Institute of
Physics. [DOI: 10.1063/1.1329910

I. INTRODUCTION As discussed below, the size of the damaged region is
closely related to the maximum bubble size. Bubbles often
There has been recent interest in using the dynamicaixpand to many times their initial radius. In this case, a 1D
effects of small high pressure vapor bubbles for medicakpherical model suffices to describe the expansion phase. To
applications: The bubbles are created by the expansion of alescribe jet formation on bubble collapse, a 2D axisymmet-
small volume of water-dominated fluid or soft tissue whichric model is needed. Since we are mainly interested in the
has been rapidly heated to high temperature and pressure.dkpansion mechanism of tissue damage, we concentrate on
is important to know the most efficient way to cut and 1D spherical models of bubble dynamics. In addition, we
break-up tissue with such bubbles. High efficiency is needeg@resent estimates of the growth of perturbations to this sym-
to minimize the energy and power of the source and to minimetry which ultimately lead to the jet formation, and the
mize the amount of residual heat, which can cause unwante@sults of a 2D axisymmetric calculation to support the per-
damage. Theoretical modeling of the bubble dynamics is deturbation calculations.
sired in order to reduce the size of parameter space that must The vapor bubbles under consideration are similar to
be explored experimentally, and to develop a fundamentatavitation bubbles, whose study has a long rich history, in-
understanding of the mechanisms. cluding work by Rayleighand work in the 1940s and 1950s
Vapor bubbles cut and break-up tissue via two primarymotivated by the need to understand the mechanics of under-
mechanisms. In the firsiexpansioh mechanism, which is water propeller damage caused by cavitation bubbBev-
the focus of this paper, the tissue is broken-up by a shockral books and review articRssummarize the status of
wave and shear stresses associated with the expansion of thebble research as of the 1970s while some of the more
bubble. The secongtollapse@ mechanism is associated with recent work is reported in the papers cited in Ref. 6. Ad-
a shock wave and a fluid jet created upon collapse of a nonsances associated with sonoluminescence have been dis-
spherical bubble. The role of the collapse mechanism ircussed most recentlyResearch on underwater explosions is
medical applications has been studied recently by othealso relevant to the present wdtlan important result of the
workers? In the expansion mechanism, the most importaniprevious research is an enhanced Rayleigh model for bubble
guantities desired from a model are the size of the regiomvolution.
which experiences material failutthe damaged regionpand In order to address the medical applications of vapor
the efficiency of creating a damaged region of a certain sizébubbles, we are motivated to further extend the Rayleigh
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model to include material strength and failure and to cor- Y
rectly account for the emitted acoustic energy. The advan- Y
tages of an extended Rayleigh modEBRM) over a more 0
detailed compressible hydrodynamic model are computa-

tional speed and simplicity since the ERM is described by a

single ordinary differential equation, while the hydrody- } -

namic model is composed of a set of partial differential equa- Y /2 e

tions. Although the ERM is more efficient, it does not give 0 H

information such as the detailed evolution of the stress wave FIG. 1. Stress—strain behavior for material failure model.

or shock once it is emitted. It also does not take into account
internal structure of the bubble or the more complicated
models of material failure. Because of these limitations, it is
necessary to compare the ERM to compressible hydrody-
namic simulations to verify its accuracy and range of valid-all of the bubble gas. Further evaporation of gas into the

ity. bubble from the surrounding material is negligible. We use a
detailed equation-of-state, as described in Sec. lll, to de-
Il. EXTENDED RAYLEIGH MODEL scribe the evolution of the internal gas.

) ) ) The Kirkwood—Beth& hypothesis has been made in ob-
The extended Rayleigh model describes two regions—ining Eq.(1). This assumes that the kinetic enthalpy in the
the interior of the bubble and the exterior, separated by thgpock wave emanating from the bubble interior, defined as
bubble wall. The flow is assumed to be spherically symmety , R2/2. is much greater than the dissipated enthalpy, de-
ric. The exterior material is assumed to be incompressibleﬁned asf TdS whereSin the entropy. This hypothesis Iea,lds

Cpndqction of heat away from th? bubble is ignored her 0 a wave equation for the kinetic enthalpy with veloaity
since it occurs on a much longer time scale than the bubble : . .
R. It should be valid for weak shocks, i.e., bubble wall

dynamics. The processes of conduction and convection ar,{;I h berR/C.<O(1). butsi it i hvbothesis it
important in determining the ultimate distribution of residual ach numbesR/C;<O(1), butsince it is a hypothesis i

heat in the medium, but this is outside the scope of the cu1IJeedS to be verified by comparison to detailed dynamic

rent work. The equation that we use to describe the temporzﬁ'mmat'ons' One can expect it tq break down for strong
evolution of the bubble is based on the Rayleigh m&deI,ShOCkS' We have added the reflection fagtdo account for

enhanced by Kirkwood and Betfieand Plesset and partial reflection of the stress waver weak shockat the

Gilmore? We further extend this model to include the addi- bubble—solid interface. Note that for small Mach numBer
tion of heat at the onset of bubble expansion, materia]_PsCs/(PsCsT PuCo). This shows a complete reflection of
strength and failure, a more accurate accounting of the partiépetln—tgomg yva_\/e(l.e.]c, ch: 1.) for_pbcb<p§cs, Srldoa c?m—
reflections of stress waves at the surface of the bubble, an?Je e transmission of the in-going wavge., F=0.9 for

an accurate equation of state. The second order ODE for tH&Cb " PsCs - . .
position of the bubble wallR, is The shear strength and failure has been included by the

_ _ _ radial stress ternY ({R(t)}), which is a function of the com-
RR(1— R/cg)+ 2R2%(1—R/3cs) plete time history of the bubble wajR(t)}. To obtain the
expression for this stress it is assumed that the solid is locally
linear-elastic with a shear modulus afand is incompress-
ible. Failure is assumed to be perfectly plastic. That is, when
the failure stressY, is exceeded, the material fails com-
pletely and the local stress goes to zero. This gives the
expressior,

. R . .
=h(1+R/cy) +F —h(1-Rlcy), (1)
S

where h=enthalpy change between bubble wall
and infinity=/ dP/ps;  F=(ps—ppR(cp—RIC3—R?))/
(ppCp— RIcs+R+pg); Po=pressure at infinity;cs=sound
speed in solidgy,=sound speed in bubblpyz=solid density;

pp=bubble density. The derivation of E¢l) including the v R—Ry| (R?+RyR+Rj)R, 3
reflection factorF is presented in the Appendix. e Ro 3R§ '
The pressure is given by the equation
20 R where Ry=initial unstressed radius; Ry=maxR,,
P=Py— ~ —4ns~Y({R(D)), @ o2 |  radius; Ra=max®
R R V2|R;,—Rg|/3eq) =radius to which solid has failed;
Rp=maximum radius up to time; ey=Y/2u=failure

whereg=surface energyy=viscosity; Y=negative of radial
deviatoric stress;P,=bubble pressurgfrom equation of
statg. The behavior of the radial stress over a loading cycle is
Since all stresses discussed in this paper are deviatorghown in Fig. 1. The solid acts perfectly elastically as the
we will usually refer to them simply as stresses for brevity.strain of the bubble wale=2(R—Rg)/R increases. When
The definition ofY is the negative of the deviatoric stress. the failure stress is reached the material starts to fail out to a
The bubble pressureR,, refers to the total gas pressure radiusRy so that the stress remains clampedrgt As the
inside the bubble. We assume that the laser heating generat&sain is decreased, the material as a whole acts again as a

strain.
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perfectly elastic solid(i.e., it heal$ with a reduced shear the bubble, and accounts for spatial dependence of partial

modulus due to the irreversible material failure. material failure. As in the ERM, we do not include heat
The linear growth of the interface instabiliigommonly  conduction, since it is negligible during the bubble lifetime.
called the Rayleigh—Taylor instabilitycan be determined There are three equations that are used to advance the

onceR(t) is known® The following second order ODE de- velocities, strains, and then the stresses in succession. The
termines the perturbation amplitudg of the spherical har- first is the dynamic equatiofa generalization of the fluid

monic with mode numbel, momentum equatigngiven by
4+3REIR=A, (4) pv=V-(~PI+9), (9a)
where where
R lo : J J 1
A_[I(I—1>—<I+1><I+2>pb/ps]§—<|2—1><l+2>psR3 o por==—(P=S)+ S+ —(25,+S,,),
1= .

I+(1+1)pp/ps

. d d 1
The eigenvalues of this equation are given by o= = 5 (PS50 St 1S,
Vie=— 3R/2R+ /(3R/2R)2+ A,. (6) andP= pressure§=deviatoric stress tensor= identity ten-
. . ) sor, v=velocity, andp=density. Two-dimensional cylindri-
A qualitative analysis can be made by noting that the perturg, coordinatesy andz are used. The second is the kine-

bation growth scales lik§,~exp(y..t) for constant eigenval-  4tic equationa generalized equation of continuitgiven
ues. The system is unstable to interface instabilities Whe@chematically by

Re(y.)>0. Examining Eq.(6) for p,<ps, I1>1, and ne- .

glecting theR curvature terms, one finds that 0- . o
=l+e=¢€(v,Vv), (9b)

- 3
Y+~ VIRIR—13a/pR3. (7) .
_ B ) where e=deviatoric strain tensor,#=fractional volume
The motion appears to be unstable wier 0, during the  change, and s a tensor function of velocity and its gradient.

recollapse phase, while the density is still at low. Howevergqation(9h) can be expressed explicitly by writing out the
the instability situation is really much more complicated duégngor components of the left-hand side

to several competing terms in E(), and the rapidly vary-

ing conditions during bubble collapse. An accurate analysis - dvr  dv; U,

requires the integration of E@4) along with the solution of Toor ez r”

the bubble dynamics equati¢kqg. (1)]. This is discussed in

Sec. VI. 5 :E( ﬂ_&_ﬁ)
From Eq.(7) we see that the effect of surface tension is "3\ T 9z xr)

to stabilize the largd-number modes vyielding a most un-

stable mode of e _L[, vz dvr vr
) Z 3\%9z o )’
I max—RVRps/o. (8
1 ( dv, v Z)
eI’Z:_ e o
lll. LATIS MODEL 2\ 9z or
For detailed compressible hydrodynamics simulations . Ths third equation is a generalization of Hooke’s law
we have used theLATIS computer code developed at given by
Lawrence Livermore National LaboratotyLATIS is based Co o e TN
on LASNEX,'? a laser-matter interaction code that has over 25~ — P1TS=K(0= 6l +2u(e—€j)+ S, (90

years of usage, including extensive experimental validationyhere K=bulk modulus, u=shear modulusg,,=inelastic
in the field of laser fusion. In addition to the physics that was o . . . =
) . ; volume changeg;,=inelastic strain tensor, arg},; is a small

previously inLATIS, we have added material strength and . . ! . .

. o correction accounting for coordinate rotations which may oc-
failure, based on Ref. 13, but with important enhancements . :

i ; . cur due to the Lagrangian hydrodynamic method,

described belowLATIS solves the hydrodynamic equations
with a Lagrangian finite difference numerical method, as de-  [s_],,=2S,,0,,,
scribed in the above-cited references. The accuracy ranges |
between first and second order in space and is second order [Siot;,= —2S;,w:;,
in time. We have performed zoning studies and determined .
that the numerical accuracy is 15% for the bubble calcula- [Stotdrz=2(S;2= Srr) @1z,
tions described belowATis is more realistic than the ERM \yhere
in that it accurately accounts for the emission and propaga-

i i i 1(dv, dv
tion of stress wave of arbitrary strengtmcluding shock _ (_r_ —Z)zrz rotation frequency. (10)

waves, allows for spatial variation of gas properties within QT2 Tar
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Y| siopeo 8= 128, :6,/3. (14)
¥ Yo(P,)
plastic The index for tensile failure ig;,,—the maximum percentage
flow elastic void volume, maxy;,/V) if the tensile damage is not al-
slope 1 lowed to heal, an®/;,/V if the tensile damage is allowed to
; : heal. The density used to calculate the pressure is taken to be
P max( P__, Yeo) P, the mass in the zone divided by the volume of the cell that is
not void, V—V,,.
FIG. 2. Yield surfaceyY(Pe). The effect of the damage is to decrease both the absolute

value of the minimum pressui®,, and the shear yield limit

Yeo 10 Pro(1—€p) and Yeo(1—€p), respectively. Here
If the pressure is less than a certain minimum valuep  andY,,, are constants that characterize the nucleation
(Pm, which is negativethen the pressure will relax to the of the microscopic defects which cause the material failure.

minimum value because of an increase in inelastic strainThjs leaves one with the following expressions for the time
That IS, When the fa"ure stress Is reached, defeCtS will grOVﬂerivaﬂves for the ine'astic Strains:

to clamp the pressure at that negative value. When the pres-
sure goes positive, the inelastic strain will be healed pushing
the pressure back to zero. Once all of the inelastic strain has
been healedthat is all void space collapsgedhe material

1P if P>0
;[] T P>

: " - —K#.={ 0 if 0>P<P
will be able to support positive pressure. This is ensured by K 6in m ' (15)
not allowing the inelastic strain to be less than zero. In order E[P— P if p<p
to model this effect, the values of the inelastic changes to the m m
strains and volume are chosen such that the pressure relaxes -
to the minimum pressur@,, if it is less thanP,, and to zero ) E[Y—Y ] TV
if it is greater than zero, and that the deviatoric stress invari-  2,6,=1{ 7Y € € (16)
ant 0 if Y<Y,
Y=12S:S/3 (11D where the relaxation time is governed by the equation
relaxes to its limitY¢(P¢) for values greater thal (P), 1
where the effective pressure is q ——[7] if ep=1
T To
p.=P—3/|5/16, ) 1 : (17)
- o ——[7— 7] if ep<1
S:S=2(S], +S5,+ S, + S,50), To
and and the basic relaxation time is
S =(S. + 2 _ _ zone area
|SI=(Si+S,)(S5 =SS ro=ma><(AC o e o) 18
We have definef with a factor of/2/3 rather than the usual s k
v3/2 to be consistent with the definition of in Eq. (3). This formulation is designed both to approximately

With a yield strength ofY, we get an effective pressure of model the growth of flaws in the material and to limit nu-
Y, added to the bubble by the material strength. The yieldmerical noise in the solution of the hydrodynamic equations.
surfaceY(Pg) that we use is shown schematically in Fig. 2. This is in lieu of a rate dependent model for the stress

The inelastic changé;, is limited so that the inelastic moduli. The first term is the sound transit time across the
volume,Vj,, will be between zero and the total volumé,  zone and prevents an instability in the numerical integration
All the deviatoric stresses are scaled by the same factor sgf the equations of motion. The second term is a zonal user
that Y will have the desired value. supplied time that accounts in an empirical way for the rate

The damage indexp , is calculated as dependence of the material failure. The relaxatiorr &fom

e O 7, t0 0 whenep=1 helps model the coalescence of voids.
eD=min< l,e—+ b (12 The time constant should be chosen to be the characteristic
0 0 time for the disconnected flaws to grow from the size on

wheree, is the shear strain threshold aig is the tensile  which they are nucleated to the size of the interflaw spacing.
strain threshold. These thresholds are the critical points The bulk modulus is derived from the equation of state
where the disconnected flawsuch as voids or crackgoa- (EOS. The shear modulus is supplied by the user. Two dif-
lesce into a large one and the material “breaks.” The plastiderent EOSs for water were used in this work. The first is a

strain is defined as table calculated using QECJ$.This table is valid over a
large range in both temperature and density but is not very
epzf |de|, (13 accurate around the vapor dome. The second EOS was based
on the NBS steam tablés Although this table is very accu-
where rate around the vapor dome it has a limited range of validity.

Downloaded 02 Feb 2003 to 216.88.102.27. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



24 Phys. Fluids, Vol. 13, No. 1, January 2001 Glinsky et al.

the second expansion. Both the magnitude and the functional
form of the maximum bubble radius match quite well. The
efficiency of acoustic radiation during the initial expansion
and during the first collapdéig. 5(b)] show the same trends
as the maximum bubble radius—there is more energy radi-
ated by the extended Rayleigh model during the first expan-
sion but less during the first collapse.

The different bounce behavior of the high and low initial
temperature bubbles evident in Fig. 4 can be understood
from the pressure—volume trajectories followed by material
inside the bubble. In all cases, the evolution is approximately
adiabatic. As illustrated in Fig. 6, the adiabats have a steep
pressure decline from the initial state and a flat part where
FIG. 3. Simulation geometry. the water exists in a two-phagkquid-gas state. During the
expansion and collapse cycle, bubble energy is lost by acous-
tic emission to the exterior regidisee Fig. B)]. This loss
results in a lower pressure—higher volume position reached
upon recollapse, as indicated by the diamonds in Fig. 6.

Comparisons of the stress wave emission between thidence, the second expansion is less energetic than the first in
extended Rayleigh model and the detailed dynamic simulaboth cases. The critical difference between the two cases is
tions with LATIS have been made. The geometry is shown inthe level of the two-phase pressure compared to the back-
Fig. 3. A large(practically infinite volume of water is ini- ground pressure. In the 400 °C case, the two-phase pressure
tially at temperatureT,=17 °C, pressuréP,=10bar, and is about 18 bar, larger than the background pressure of 10
liquid density(~1 g/cn?). A spherical region is then instan- atm, while for the 200°C case the two phase pressure is 3
taneously heated at constant density to temperatufgg (  bar, lower than the background pressure. Since expansion is
ranging from 200 to 500 °C. For both models, the QEOSdriven only when the bubble pressure is larger than the back-
equation-of-state is used for the water and we assume thgtound pressure, the lower temperature bubbles do not expe-
there is no surface tension or viscosity. The radius as a funagience any drive from the two-phase portion of the trajectory
tion of time is monitored as well as the energy that is emittecand therefore show a much weaker bounce than the higher
during the initial expansion and during the first collapse. Theemperature bubbles.
temporal histories of the bubble radii, shown in Fig. 4, com-  The role of shock waves and their treatment in the two
pare quite well. Both models show no bounce of the bubblenodels is discussed here. Significant shock waves are cre-
for an initial temperature of 200 °C, only one bounce forated by the initial bubble expansion and on subsequent
300 °C, and many bounces for 400 °C and 500 °C. The tembubble collapses. The inward propagating shocks tend to stay
perature(and pressupeinside the bubble varies with time in trapped within the bubble. The emission of shock waves
the opposite sense to the radius: as the bubble increases tlgon bubble expansion and collapse is included in both the
temperature drops, and vice versa. This results from the faéiRM and LATIS model, whereas detailed tracking of the
that the bubble evolution is nearly adiabatic. shocks is done only in theaTis model. Previous calcula-

As shown in Fig. §a), the maximum bubble radius for tions of the emission and tracking of shocks has been dis-
the first expansion for the extended Rayleigh model is 20%ussed in the context of sonoluminescence by Roberts and
less than for theATIs simulations but there is the same trend Wu.”
of increasing maximum radius with increasing bubble tem-  The effect of shock wave emission is found to be gener-
perature. The discrepancy in the bubble radius disappears fatly very important. For example in the 200 °C case illus-

IV. RESULTS OF BUBBLE EVOLUTION AND STRESS
WAVE EMISSION SIMULATIONS

(a) (®)

350 L YTy ¥ ] L) ] 1 il 350 L T 1 1 T L L} T g

300 . 300 ]
£ [ ] £ s
3 250f ] 3 250f E
@ ; ] @ ;
T onp . 3 T 00 b FIG. 4. Bubble radius as a function of
< F 1 g : time for (a) the ERM andb) for LATIs.
[ L 4 [} -
2 150} = S 150} 1
= L v 4 3 L
0 b g 0 b

100} . 100 | ]

50 J 50 : . 1 1 Liia
N 70 -10 0 10 20 30 40 50 60 70
time (us) time (us)

Downloaded 02 Feb 2003 to 216.88.102.27. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 13, No. 1, January 2001 Extended Rayleigh model of bubble evolution 25

(a) (b)
350 prer———r ) 20
F 1. LATIS | e bokvave: LATR - FIG. 5. (@) Maximum bubble radius as
_ 800p [—g=2nd LAIIS > £ [|zeistwave ERM 2] a function of initial bubble tempera-
£ [ |- -2nd ERM - * ] = 15T TR - - ture for the first and second expansion
3 250 F 3 e [ 1 for the extended Rayleigh model
3 [ ] 2 I (ERM) andLATis; and(b) the acoustic
B 200F 3 é 10| ] efficiency as a function of the peak
° ] 3 [ ] bubble temperature for the first and
8 150 J = - ] second emission of acoustic waves.
E s ] g s[ ] The efficiency is defined as the energy
= 100 3 3 § ] emitted into the acoustic wave divided
H 1 [ by the thermal energy required to heat
50 [ ] 0 the bubble up to its initial temperature.

500300 400 500
T, (C)

trated in Fig. 4, almost all of the energy in the first bubble  Tracking the shock waves inside the bubble was found
oscillation is dissipated as shock energy during the first colnot to be important to determine the bubble radius. This is
lapse. The good agreement between the two models indicatéslicated by the good agreement between the results of the
that the approximate treatment of the shock emission in théwo models in Fig. 4. In the ERM, the internal shock waves
ERM is adequate to predict the bubble dynamics with shoclare assumed to be trapped and dissipated. In order for them
emission. To achieve this accuracy we have found that botto escape they would have to be at the boundary of the
the terms inR/cg in Eq. (1) resulting from the Kirkwood— bubble when it collapses, a very unlikely occurrence. There
Bethe hypothesis as well as the correction to the reflectiois also a much smaller transmission coefficient out of the
factor (F) described in the Appendix must be included in theinterior upon recollapse due to the energy that was initially
ERM. If one drops thd=/c, in the last term of Eq(1) there  radiated into a shoclthe bubble interior will not reach solid

is a 25% or greater discrepancy between the ERMLamts density on collapse The verification of this picture is an-

in the energy radiated into the shock. For the cases which wether reason for the comparison of the ERM to the detailed
consider, the maximum value @¥/c, is 0.5. These large CcOmpressible hydrodynamic model.

values ofR/cg is one of the reasons that we felt it was nec-
essary to benchmark the ERM against a compressible hydrCY-- RESULTS OF MATERIAL FAILURE SIMULATIONS

dynamic model. Dropping the correction to the reflection  The material strength and failure term in the ERM is
factor was found to lead to a factor of 2 discrepancy in thgegted using the same 1D spherical geometry shown in Fig.
amount of shock energy radiated and in the maximum radius. The initial bubble temperature is 400 °C for all the simu-
lations in this section. The EOS is based on the NBS steam
tables. The first case is with no material strength or failure.
10+4 . . et The ambient pressurig, is 10 bar. The bubble radii calcu-
lated from the ERM andATis are shown in Figs. (8 and
7(b), respectively. The agreement between the two models is
incredibly good. For the second case, shown in Fi¢m.and
8(b), the ambient pressure is reducedPg=1 bar, the shear
modulusw is set to 300 bar, the shear failure strégsto 10
bar and the shear failure stragg to 8x 10" °. These param-
eters model a perfectly elastic material which fails immedi-
ately and completelysincee, is so small when the failure
stress is exceeded. The calculations of the bubble radius and
the maximum radius to which the material has completely
failed agree well, with theLATIS calculations indicating
about 4% larger damage radius than the ERM. We note that
the maximum bubble radii are approximately equal for the
two cases shown in Figs. 7 and 8. The material strength and
10+0 ! . I failure has acted as an effective ambient pressure of 10 bar.
For the third and final case, the complete failure is delayed
by using a failure straire; of 0.24. Results from aATIS
Volume (cm®) simulation are shown in Fig. 9. It is not possible to do the
FIG. 6. Adiabats in theP—V plane for initial temperatures of 200 and equwalent Slr_nUIatlon u5|_ng the ERM because th? material
400 °C. The initial points are af=1 and high pressure. The highest points failure model in the ERM includes only a failure radius sepa-
reached on bubble collapse are indicated by diamonds. rating the failed region on the inside from the elastic region
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(a) ()
400 T T T T 400
350 B 350
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g 250 g 250F 1 FIG. 7. Bubble radius as a function of
@ 200 @ 200 time for (a) the extended Rayleigh
= 2 model and(b) for LATIS. Case 1:P,
T 150 T 1s50f 3 _ _ _
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100 100
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outside. It does not allow partial failure as is found in thepressure than radial stress. This is because of the small shear
general case, e.g., fog;=0.24. Figure 9 displays three modulus, 300 bar, compared to the bulk modulus of water,
curves giving the results of this simulation. The first is the22 kbar. The radial shear stress is still enough in this wave to
bubble radius. The maximum radius is reduced 30% comeause failure of the material out to 2Q@0n as indicated by
pared to case 2 shown in Fig(B by delayed coalescence, the zero value of the radial stress out to this radius a8.2
which has raised the effective applied pressure above 10 baFfor longer times the stress builds up to the failure stress of
The second curve is the radius to which the material had0 bar as one approaches the bubble. At this point the mate-
completely failed. The third curve delineates the dividingrial can no longer support radial stress; the material fails and
line between the region of partial failure and no failure. Fig-the stress is transferred to a pressure of 10 bar which is
ure 10 shows examples of typical stress—strain curves for theommunicated to the bubble wall. Since the total stress is
three regions shown in Fig. 9. The first is that of a perfectlycontinuous, the deviatoric part outside the region of failure
elastic stress—strain curgendamaged materjalThe second will be taken up by the pressure inside the region of failure,
is that of material that has started to undergo failure but haas illustrated in the region near 920n in Fig. 14c). Also
not yet totally failed. The final curve is that of material that note that the deviatoric radial stress is approximately equal in
has totally failed and will no longer support any stress. magnitude to the pressure for the latter time bubble evolution
The next three figure@=igs. 11-13, show the details of seen in Fig. 1&). The radius of damaged material is ex-
the evolution of the threeATis simulations just discussed. tended to almost 1 mm by the bubble motion.
Three quantities are displayed. The first is the density multi- The final case, Fig. 13, demonstrates the effect of
plied by a factor of 3, chosen for convenience of display. Thegradual failure. The stress pulse propagates out of the prob-
other two quantities are the Iggof the pressurd® and the lem causing some degree of damage to a 250 radius.
negative of the radial stress,;S;,, measured in bar. Nega- This is indicated by the radial stress being clamped at 10 bar
tive quantities correspond to negative values of the quantin Fig. 13b). During the longer time bubble evolution, Fig.
ties. The first case, Fig. 11, shows the pressure wave moving3(c), one can see the radial stress build up to a maximum
away from the bubble. It leaves behind the pressure profil@alue of 10 bar as the bubble wall is approached from large
predicted by the Rayleigh model. The second case demomadii. As one further approaches the bubble wall this stress
strates the effect of material strength and failure. Figure 12lecreases to zero as the material totally fails and the stress is
shows the spatial distribution of the pressure, density, antransferred to a pressure of 20 bar that is communicated to
(deviatorig radial stress at several times. As the acoustidhe bubble wall. It is this increased pressure which is respon-
wave moves away from the bubble, it has a much greatesible for the decreased bubble radius.
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SIMULATIONS FIG. 11. Density(p, solid line), pressuréP, dashed lingvs radius. Density

. . e . is multiplied by three with units of g/ctn The pressure is displayed as
The growth of interface instabilities has been studiedgg, (p), whereP is in bar. Each panel is a snapshot at the time indicated.

using the same geometry shown in Fig. 3. The ambient presthe arrows indicate direction of motion. The material parametersPgre

sureP, was 1 bar, the initial bubble temperature was 500 °C,=10 bar, u=0, Y,=0.
the surface tension was 70 erg/cr) and the equation of
state was QEOS. The assumed surface tension is appropriate

to our idealized scenario in which the temperature profile ha§oefficients is less than the instability growth rate,y1/,
a discontinuity at the bubble surface. In a real situation with@nd iS much easier to calculate than the solution of (Bj.
a smooth temperature profile, the surface tension may b@hich is more generally valid. Thie=10 mode grows more

much less since the liquid just outside the bubble would bdhan a decade during each collapse of the bubble. [The
heated to a temperature near boiling. In either case, the sur= 100 mode is stabilized by the surface tension which resists

face tension is not a very important effect. We assume that

5,<R, in accordance with PlessktWe also maintain the

assumption of no heat conduction and assume that the vapc(a> (= 0201 s
pressure inside the bubble is small, as discussed in Sec. Il “F T
For the particular case under consideration, the assumptiol st
of no heat conduction is expected to be valid for mode- ,}
numbers less than abolit=130. This results from the fact
that the conduction heat transport time scale across a dis ' ]
tance equal to the wavelength of the mode is longer than the oft--v —— — — - ————
bubble collapse tim¢10 us) for these modes. For smaller [ .. i, s ]

bubbles, conduction might be important at smaller mode ° adius Gm) 1900
numbers.

The growth of the instabilities is shown in Fig. 14. In
Fig. 14@ we show the growth of thé=10 and|=100 . t=95ps

modes, using the WKB approximation, namely,
= {10 exd [+ dt], with eigenvalues found from Eg@6). This ] ]
approximation is valid when the time rate of change of the 2t L . 3

3L
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FIG. 10. Examples of stress—strain relationship (@rperfectly elastic or  stress is displayed as lgg—S;,;), whereS;, is in bar. Each panel is a
undamaged materialp) material which has partially failed, ar{d) material snapshot at the time indicated. The arrows indicate direction of motion. The

which has totally failed. material parameters af,=1 bar, ©=300 bar,Y,= 10 bar,e,=8x10"5.
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FIG. 15. 2DLATIs simulation of bubble evolution displaying & 1, bubble
and spike instability.

surface perturbation. The behavior of the instability as a
function of mode number is demonstrated in Fig.(Md4
There we show the maximum growth over time vs mode
number, using two levels of approximation. The first is the
WKB approximation as used for Fig. (&. The second level

of approximation uses the solution of Hd), a second order
ODE with time varying coefficients. This is more accurate
than the WKB approximation. For smadll the maximum
instability occurs for smalR, R<0, andp,<ps, but more
importantly, when the time rate of change of the coefficients
is large. This is the reason for the discrepancy between the
two approximations seen in Fig. @ at smalll. On a close

snapshot at the time indicated. The arrows indicate direction of motion. Th@&Xamination of the evolution of E¢4) for =1, it is found
material parameters af,=1 bar, =300 bar,Y,=10 bar,e;=0.24.
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that the mode can grow to the amplitude predicted by the
WKB approximation during the first collapse, but the com-
plicated evolution prevents it from growing further. It is ap-
parent that the growth of low mode number instabilities is
complicated. The more precise treatment, using @4.is
necessary to correctly predict the growth rates for these
modes. For higher modes, the WKB approximation does an
adequate job. Note that the maximum instability in the solu-
tion of Eq. (4) is for =10 as predicted by Eq®8). This
WKB-based prediction holds for these higher modes.

All modes up tol=10 were found to be significantly
unstable. There are two important seeds for these instabili-
ties. The first is the nonspherical symmetry imposed by a
laser fiber which will seed the=1 mode with at least a few
percent amplitude. The second is the presence of a material
interface such as a vessel wall. The reflection of the acoustic
radiation off of this interface and the subsequent imprint of
this wave on the bubble motion when it impinges on the
vessel wall would be expected to seed a signifidan®
perturbation. The growth factors shown in Fig. 14 are quite
large and might be expected to alter the bubble evolution.
Without instability, the bubble bounces more than 10 times.
Since these modes will grow about a decade per collapse it is
unlikely that the bubble will be able to bounce more than
once or twice.

To further address the role of instabilities in the dynam-
ics of laser generated bubbles we have performed a two-
dimensionalATis simulation!® This simulation accounts for
the nonspherical creation of a bubble. In theris simula-
tion, 0.312 J of energy is deposited in a A& layer at the
end of a laser fiber. The shape of the bubble is shown in Fig.

FIG. 14. Growth of the interface instability is shown by the size of the mode15 at two times. The rigid-nature of the fiber acts to continu-

normalized by its initial amplitudé, /¢,,. (8) Mode amplitude vs time as
predicted by the WKB approximatiortb) Maximum-in-time amplitude vs
mode number. The filled circles are determined by solving(8q.The open

circles are the result of the WKB approximation.

ously drive perturbations from a spherical flow in the sur-
rounding water. The fiber predominantly drives thel
mode with a perturbation of at least a few percent. This leads
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dynamics during the collapse phase and can limit the number
of bubble bounces.

VII. DISCUSSION AND CONCLUSIONS

We have presented an extended Rayleigh model for the
dynamics of laser generated vapor bubbles. The extensions
beyond previous work include the addition of heat at the
onset of bubble expansion, the effects of material strength
and failure, a more accurate accounting of the partial reflec-
tions of stress waves at the surface of the bubble, and an
accurate equation of state. In addition, we presented a de-
scription of the interface instability expected during bubble
evolution.

Three components of the physics contained in the ERM
) ) . . were benchmarked againsiTis simulations—acoustic ra-
to the classic bubble and spike shelpavith Kelvin- diation, material strength and failure, and interface instabil-
Helmholtz roll-up, seen at 6s in Fig. 13b). ity. Good agreement was found for all three. Taking into

An extended-Rayleigh model simulation has been dongc.,nt partial reflection of the acoustic wave at the bubble
for comparison to the 2DATIS simulation. The geometry for jerface is important to find agreement between the ERM
the ERM is shown in Fig. 16. Outside of a pn hard core, 5, ais. There is a factor of 2 or more discrepancy in how
0.312 J is deposited into a J2m shell. This geometry ré- 1 ch energy is radiated and about the same in maximum
produce; both the initial su'rface area .and volume of the 2[?adius, if the reflection factofF) is not included. The form
calculation. The hard core is a zero displacement boundarys e reflection factor that we derived has been verified.
It is used the mimic the effect of a rigid optical fiber. The \ ateria| strength and failure was found to act as an increased
growth of thel=1 mode is shown in Fig. 17. There are ymnient pressure, with a value equal to the shear failure
significant differences between the 2BTIS calculation and stress of the material. This is manifested as smaller maxi-
the ERM calculation. TheaTis calculation has a strong per- i, m pybble radii and shorter bubble oscillation periods. The
sistent 2D perturbatio(the fibey, which continuously drives 1, ;phie was found to be significantly unstable to interface
the bubble dynamics, whereas the ERM model has only apgapilities on collapse—the magnitude of the oscillation
initial perturbation of small amplitude. Despite these d'ffer'growing a decade per collapse. With such growth, it is un-
ences, a qualitative agreement in the behavior is seen bggey that bubbles generated by optical fibers will be able to

tween the two models. The size of the1 mode is pre- p,n0e more than a few times as would a strictly spherical
dicted by the ERM to grow by more than a decade during thg, |

bubble collapseFig. 17 in qualitative agreement with the It was found that the ERM model executed 300 times

growth of the bubble and spike seen in the RAXIS SiMU- ¢ qiar than the compressible hydrodynamic simulation code
lation [Fig. 15b)]. Thus the results of the 2D simulations q equivalent computers. The extended Rayleigh model has
combl_ned with th‘?se of.t.he ERM su_pport the nouon that theproven accurate and fast. We suggest that it will be useful for
Rayleigh—Taylor instability can be important in the bubble g i calculations to aid in the design of devices using laser

generated vapor bubbles.

FIG. 16. Geometry used for the ERM to compare to thel2Ds simula-
tions.
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0 20 40 60 80 100 120 140 160 In this Appendix an equation for the temporal evolution
time (us) of a bubble is derived. This equation is a second order ODE
for the bubble radius as a function of time. What differenti-
dicted by the ERM and the WKB approximation. This is for the geometry ates this equation from _prewous work is a more complete
shown in Fig. 16. Point A corresponds to the 2Bris simulation in Fig.  treatment of the gen_eratlon of the pressure wave. This more
15(a). Point B corresponds to the 2DTis simulation in Fig. 18b). complete treatment is necessary to have agreement between

T T 1T
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APPENDIX: DERIVATION OF EXTENDED BUBBLE
DYNAMICS EQUATION

FIG. 17. Growth of the interface instability as a function of time as pre-

Downloaded 02 Feb 2003 to 216.88.102.27. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



30 Phys. Fluids, Vol. 13, No. 1, January 2001 Glinsky et al.

Pb- Cb Ps; Cs along with the relationships

= -lo(x/c o+t - - .
Po=Age (eg+t) Co=Cs—R, cr=cCcst+R, cr=c,—R,

o7 = Aq e O0YCr+) the following equation is derived for the reflection factor:
T= AT

4_\/\/\/\__ R . ) —pbl.?( Cb_R>
N\~ le(l—ﬁ)z B s (A6)
Og = A elOXeR D) o o i P
ce+R 7°

FIG. 18. The scattering of a wave by a moving interface. .
ng wave by ving 1 Now Egs.(A1)—(A3) can be combined and the result evalu-

ated atr =R to give

the ERM andLATis. The Kirkwood—Bethe hypothesis is RR(1—R/cq)+ 2R2(1—R/3c,)
used so that the equation will be valid for weak shojtkat

is bubble wall Mach numberR/cs<O(1)]. The equation is —h(1+ R/c )+ F Eh(l—h/c ) (A7)
not linearized in terms of the parameRft <1 (that is, itis ® Cs °
not reduced to the acoustic wave limiThe weak shock is An implicit assumption in this derivation is the neglect

also allowed to both transmit and reflect at the bubble boundyt the transmitted wave generating a secondary reflected and
ary. Both the weak shock nonlinearity and the partial transyansmitted waves after being reflected at the bubble center.
mission of the shock into the bubble are necessary to havghese multiple reflections only contribute to the tail of the
good agreement between the ERM aadis. The derivation  otgoing wave because they are time delayed by at least
closely follows that of Knappet al” The following discus-  oR/c, . Furthermore, the bubble expansion traps the ingoing
sion will focus on the essence of the derivation and will\yaye inside the bubble via the reduction in the bubble den-

highlight the additions. o _ sity. Therefore, the contributions of the reflected waves have
The starting point is the continuity equation been ignored in the derivation of EGA7).
2u  du 1 dh
T + E == ? a! (A1) K. W. Gregory, ininterventional Cardiologyedited by E. J. TopdiSand-
ers & Co., New York, 1994 p. 892; A. Vogel, S. Busch, K. Jungnickel,
the momentum equation and R. Birngruber, Lasers Surg. Mekb, 32 (1994; T. G. van Leeuwen,
E. D. Jansen, M. Motamedi, C. Borst, and A. J. WelctQjtical-Thermal
du dh Response of Laser-Irradiated Tisswelited by A. J. Welch and M. J. C.
G (A2) Van GemertPlenum, New York, 1996 p. 709; A. Vogel, R. Engelhardt,
t ar U. Behnle, and U. Parlitz, Appl. Phys. B: Photophys. Laser Clgan173

(1996; A. Vogel and U. Parlitz, J. Acoust. Soc. Arh0Q, 148(1996); U.
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