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An extended Rayleigh model of bubble evolution
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An extended Rayleigh model for laser generated bubbles in water and soft tissue is presented. This
model includes surface tension, viscosity, a realistic equation of state, material strength and failure,
stress wave emission, and linear growth of interface instabilities. The model is validated by
comparison to detailed compressible hydrodynamic simulations using theLATIS computer program.
The purpose of this study is to investigate the use of the extended Rayleigh model as a much faster
and simpler substitute for the detailed hydrodynamic simulations when only limited information is
needed. It is also meant to benchmark the hydrosimulations and highlight the relevant physics. The
extended Rayleigh model and the hydrosimulations are compared using both a 1D spherical
geometry with a bubble in the center and a 2D cylindrical geometry of a laser fiber immersed in
water with a bubble formed at the end of the fiber. Studies are done to test the validity of the
material strength and failure, stress wave emission, and the interface instability terms in the
extended Rayleigh model. The resulting bubble radii, material damage radii, the emitted stress wave
energies, and the size of the interface distortions are compared. Many of the trends found in the
hydrosimulations are illuminated by the extended Rayleigh model owing to its relative simplicity.
The extended Rayleigh model is very useful since it is accurate over a large range of parameters and
it is computationally much faster than the hydrosimulations. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1329910#
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I. INTRODUCTION

There has been recent interest in using the dynam
effects of small high pressure vapor bubbles for med
applications.1 The bubbles are created by the expansion o
small volume of water-dominated fluid or soft tissue whi
has been rapidly heated to high temperature and pressu
is important to know the most efficient way to cut an
break-up tissue with such bubbles. High efficiency is nee
to minimize the energy and power of the source and to m
mize the amount of residual heat, which can cause unwa
damage. Theoretical modeling of the bubble dynamics is
sired in order to reduce the size of parameter space that
be explored experimentally, and to develop a fundame
understanding of the mechanisms.

Vapor bubbles cut and break-up tissue via two prim
mechanisms. In the first~expansion! mechanism, which is
the focus of this paper, the tissue is broken-up by a sh
wave and shear stresses associated with the expansion
bubble. The second~collapse! mechanism is associated wit
a shock wave and a fluid jet created upon collapse of a n
spherical bubble. The role of the collapse mechanism
medical applications has been studied recently by o
workers.2 In the expansion mechanism, the most import
quantities desired from a model are the size of the reg
which experiences material failure~the damaged region!, and
the efficiency of creating a damaged region of a certain s
201070-6631/2001/13(1)/20/12/$18.00
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As discussed below, the size of the damaged region
closely related to the maximum bubble size. Bubbles of
expand to many times their initial radius. In this case, a
spherical model suffices to describe the expansion phase
describe jet formation on bubble collapse, a 2D axisymm
ric model is needed. Since we are mainly interested in
expansion mechanism of tissue damage, we concentrat
1D spherical models of bubble dynamics. In addition,
present estimates of the growth of perturbations to this s
metry which ultimately lead to the jet formation, and th
results of a 2D axisymmetric calculation to support the p
turbation calculations.

The vapor bubbles under consideration are similar
cavitation bubbles, whose study has a long rich history,
cluding work by Rayleigh3 and work in the 1940s and 1950
motivated by the need to understand the mechanics of un
water propeller damage caused by cavitation bubbles.4 Sev-
eral books and review articles5 summarize the status o
bubble research as of the 1970s while some of the m
recent work is reported in the papers cited in Ref. 6. A
vances associated with sonoluminescence have been
cussed most recently.7 Research on underwater explosions
also relevant to the present work.8 An important result of the
previous research is an enhanced Rayleigh model for bu
evolution.

In order to address the medical applications of vap
bubbles, we are motivated to further extend the Rayle
© 2001 American Institute of Physics
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21Phys. Fluids, Vol. 13, No. 1, January 2001 Extended Rayleigh model of bubble evolution
model to include material strength and failure and to c
rectly account for the emitted acoustic energy. The adv
tages of an extended Rayleigh model~ERM! over a more
detailed compressible hydrodynamic model are comp
tional speed and simplicity since the ERM is described b
single ordinary differential equation, while the hydrod
namic model is composed of a set of partial differential eq
tions. Although the ERM is more efficient, it does not gi
information such as the detailed evolution of the stress w
or shock once it is emitted. It also does not take into acco
internal structure of the bubble or the more complica
models of material failure. Because of these limitations, i
necessary to compare the ERM to compressible hydro
namic simulations to verify its accuracy and range of val
ity.

II. EXTENDED RAYLEIGH MODEL

The extended Rayleigh model describes two region
the interior of the bubble and the exterior, separated by
bubble wall. The flow is assumed to be spherically symm
ric. The exterior material is assumed to be incompressi
Conduction of heat away from the bubble is ignored h
since it occurs on a much longer time scale than the bub
dynamics. The processes of conduction and convection
important in determining the ultimate distribution of residu
heat in the medium, but this is outside the scope of the c
rent work. The equation that we use to describe the temp
evolution of the bubble is based on the Rayleigh mod3

enhanced by Kirkwood and Bethe,8 and Plesset and
Gilmore.4 We further extend this model to include the add
tion of heat at the onset of bubble expansion, mate
strength and failure, a more accurate accounting of the pa
reflections of stress waves at the surface of the bubble,
an accurate equation of state. The second order ODE fo
position of the bubble wall,R, is

RR̈~12Ṙ/cs!1 3
2 Ṙ2~12Ṙ/3cs!

5h~11Ṙ/cs!1F
R

cs
ḣ~12Ṙ/cs!, ~1!

where h[enthalpy change between bubble w
and infinity5*P0

P dP/rs ; F[(rs2rbṘ(cb2Ṙ/cs
22Ṙ2))/

(rbcb2Ṙ/cs1Ṙ1rs); P0[pressure at infinity;cs[sound
speed in solid;cb[sound speed in bubble;rs[solid density;
rb[bubble density. The derivation of Eq.~1! including the
reflection factorF is presented in the Appendix.

The pressure is given by the equation

P5Pb2
2s

R
24h

Ṙ

R
2Y~$R~ t !%!, ~2!

wheres[surface energy;h[viscosity;Y[negative of radial
deviatoric stress;Pb[bubble pressure~from equation of
state!.

Since all stresses discussed in this paper are devia
we will usually refer to them simply as stresses for brevi
The definition ofY is the negative of the deviatoric stres
The bubble pressure,Pb , refers to the total gas pressu
inside the bubble. We assume that the laser heating gene
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all of the bubble gas. Further evaporation of gas into
bubble from the surrounding material is negligible. We us
detailed equation-of-state, as described in Sec. III, to
scribe the evolution of the internal gas.

The Kirkwood–Bethe8 hypothesis has been made in o
taining Eq.~1!. This assumes that the kinetic enthalpy in t
shock wave emanating from the bubble interior, defined
h1Ṙ2/2, is much greater than the dissipated enthalpy,
fined as* TdS, whereS in the entropy. This hypothesis lead
to a wave equation for the kinetic enthalpy with velocitycs

1Ṙ. It should be valid for weak shocks, i.e., bubble wa
Mach number5Ṙ/cs<O(1), but since it is a hypothesis i
needs to be verified by comparison to detailed dynam
simulations. One can expect it to break down for stro
shocks. We have added the reflection factorF to account for
partial reflection of the stress wave~or weak shock! at the
bubble–solid interface. Note that for small Mach numberF
5rscs /(rscs1rbcb). This shows a complete reflection o
the in-going wave~i.e., F51! for rbcb!rscs ; and a com-
plete transmission of the in-going wave~i.e., F50.5! for
rbcb5rscs .

The shear strength and failure has been included by
radial stress termY($R(t)%), which is a function of the com-
plete time history of the bubble wall$R(t)%. To obtain the
expression for this stress it is assumed that the solid is loc
linear-elastic with a shear modulus ofm and is incompress-
ible. Failure is assumed to be perfectly plastic. That is, wh
the failure stressY0 is exceeded, the material fails com
pletely and the local stress goes to zero. This gives
expression,9

Y54mS R2R0

R0
D ~R21R0R1R0

2!R0

3Rd
3 , ~3!

where R0[ initial unstressed radius; Rd[max(R0,
A3 2uRm

3 2R0
3u/3ed)5radius to which solid has failed

Rm[maximum radius up to timet; ed[Y0/2m5failure
strain.

The behavior of the radial stress over a loading cycle
shown in Fig. 1. The solid acts perfectly elastically as t
strain of the bubble walle52(R2R0)/R increases. When
the failure stress is reached the material starts to fail out
radiusRd so that the stress remains clamped atY0 . As the
strain is decreased, the material as a whole acts again

FIG. 1. Stress–strain behavior for material failure model.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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22 Phys. Fluids, Vol. 13, No. 1, January 2001 Glinsky et al.
perfectly elastic solid~i.e., it heals! with a reduced shea
modulus due to the irreversible material failure.

The linear growth of the interface instability~commonly
called the Rayleigh–Taylor instability! can be determined
onceR(t) is known.10 The following second order ODE de
termines the perturbation amplitudez l of the spherical har-
monic with mode numberl,

z̈ l13Ṙż l /R5Alz l , ~4!

where

Al[

@l~l21!2~l11!~l12!rb /rs#
R̈

R
2~l221!~l12!

ls

rsR
3

l 1~ l 11!rb /rs
. ~5!

The eigenvalues of this equation are given by

g l 6523Ṙ/2R6A~3Ṙ/2R!21Al . ~6!

A qualitative analysis can be made by noting that the per
bation growth scales likez l;exp(gl6t) for constant eigenval-
ues. The system is unstable to interface instabilities w
Re(gl1).0. Examining Eq.~6! for rb!rs , l @1, and ne-
glecting theṘ curvature terms, one finds that

g l 1;AlR̈/R2 l 3s/rsR
3. ~7!

The motion appears to be unstable whenR̈.0, during the
recollapse phase, while the density is still at low. Howe
the instability situation is really much more complicated d
to several competing terms in Eq.~6!, and the rapidly vary-
ing conditions during bubble collapse. An accurate analy
requires the integration of Eq.~4! along with the solution of
the bubble dynamics equation@Eq. ~1!#. This is discussed in
Sec. VI.

From Eq.~7! we see that the effect of surface tension
to stabilize the largel-number modes yielding a most un
stable mode of

l max;RAR̈rs /s. ~8!

III. LATIS MODEL

For detailed compressible hydrodynamics simulatio
we have used theLATIS computer code developed a
Lawrence Livermore National Laboratory.11 LATIS is based
on LASNEX,12 a laser-matter interaction code that has over
years of usage, including extensive experimental validat
in the field of laser fusion. In addition to the physics that w
previously in LATIS, we have added material strength a
failure, based on Ref. 13, but with important enhanceme
described below.LATIS solves the hydrodynamic equation
with a Lagrangian finite difference numerical method, as
scribed in the above-cited references. The accuracy ra
between first and second order in space and is second o
in time. We have performed zoning studies and determi
that the numerical accuracy is 15% for the bubble calcu
tions described below.LATIS is more realistic than the ERM
in that it accurately accounts for the emission and propa
tion of stress wave of arbitrary strength~including shock
waves!, allows for spatial variation of gas properties with
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the bubble, and accounts for spatial dependence of pa
material failure. As in the ERM, we do not include he
conduction, since it is negligible during the bubble lifetim

There are three equations that are used to advance
velocities, strains, and then the stresses in succession.
first is the dynamic equation~a generalization of the fluid
momentum equation! given by

r v̇5¹•~2PIJ1SJ!, ~9a!

where

r v̇ r52
]

]r
~P2Srr !1

]

]z
Srz1

1

r
~2Srr 1Szz!,

r v̇z52
]

]z
~P2Szz!1

]

]r
Srz1

1

r
Srz ,

andP5pressure,SJ5deviatoric stress tensor,IJ5identity ten-
sor, v5velocity, andr5density. Two-dimensional cylindri-
cal coordinates,r and z, are used. The second is the kin
matic equation~a generalized equation of continuity! given
schematically by

u̇

3
IJ1eJ5eJ~v,¹v!, ~9b!

where eJ5deviatoric strain tensor,u5fractional volume
change, ande is a tensor function of velocity and its gradien
Equation~9b! can be expressed explicitly by writing out th
tensor components of the left-hand side,

u̇5
]v r

]r
1

]vz

]z
1

v r

r
,

ėrr 5
1

3 S 2
]v r

]r
2

]vz

]z
2

v r

r D ,

ėzz5
1

3 S 2
]vz

]z
2

]v r

]r
2

v r

r D ,

ėrz5
1

2 S ]v r

]z
1

]vz

]r D .

The third equation is a generalization of Hooke’s la
given by

2 ṖIJ1SJ̇5K~ u̇2 u̇ in!IJ12m~eJ̇2eJ̇in!1SJ̇rot , ~9c!

where K5bulk modulus,m5shear modulus,u in5inelastic

volume change,eJin5inelastic strain tensor, andSJ̇rot is a small
correction accounting for coordinate rotations which may
cur due to the Lagrangian hydrodynamic method,

@Ṡrot# rr 52Srzv rz ,

@Ṡrot#zz522Srzv rz ,

@Ṡrot# rz52~Szz2Srr !v rz ,

where

v rz5
1

2 S ]v r

]z
2

]vz

]r D5rz rotation frequency. ~10!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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23Phys. Fluids, Vol. 13, No. 1, January 2001 Extended Rayleigh model of bubble evolution
If the pressure is less than a certain minimum va
~Pm , which is negative! then the pressure will relax to th
minimum value because of an increase in inelastic str
That is, when the failure stress is reached, defects will g
to clamp the pressure at that negative value. When the p
sure goes positive, the inelastic strain will be healed push
the pressure back to zero. Once all of the inelastic strain
been healed~that is all void space collapsed! the material
will be able to support positive pressure. This is ensured
not allowing the inelastic strain to be less than zero. In or
to model this effect, the values of the inelastic changes to
strains and volume are chosen such that the pressure re
to the minimum pressurePm if it is less thanPm and to zero
if it is greater than zero, and that the deviatoric stress inv
ant

Y5A2SJ:SJ/3 ~11!

relaxes to its limitYe(Pe) for values greater thanYe(Pe),
where the effective pressure is

Pe5P2A3 uSJu/16,

SJ:SJ52~Srr
2 1Szz

2 1Srz
2 1SzzSrr !,

and

uSJu5~Srr 1Szz!~Srz
2 2Srr Szz!.

We have definedY with a factor ofA2/3 rather than the usua
A3/2 to be consistent with the definition ofY in Eq. ~3!.
With a yield strength ofY0 we get an effective pressure o
Y0 added to the bubble by the material strength. The yi
surfaceYe(Pe) that we use is shown schematically in Fig.

The inelastic changeu in is limited so that the inelastic
volume,Vin , will be between zero and the total volume,V.
All the deviatoric stresses are scaled by the same facto
that Y will have the desired value.

The damage index,eD , is calculated as

eD5minS 1,
ep

e0
1

u in

u0
D , ~12!

wheree0 is the shear strain threshold andu0 is the tensile
strain threshold. These thresholds are the critical po
where the disconnected flaws~such as voids or cracks! coa-
lesce into a large one and the material ‘‘breaks.’’ The plas
strain is defined as

ep[E udeinu, ~13!

where

FIG. 2. Yield surface,Ye(Pe).
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ein5A2eJin :eJin/3. ~14!

The index for tensile failure isu in—the maximum percentag
void volume, max(Vin /V) if the tensile damage is not al
lowed to heal, andVin /V if the tensile damage is allowed t
heal. The density used to calculate the pressure is taken
the mass in the zone divided by the volume of the cell tha
not void,V2Vin .

The effect of the damage is to decrease both the abso
value of the minimum pressurePm and the shear yield limit
Yeo to Pmo(12eD) and Yeoo(12eD), respectively. Here
Pmo and Yeoo are constants that characterize the nucleat
of the microscopic defects which cause the material failu
This leaves one with the following expressions for the tim
derivatives for the inelastic strains:

2K u̇ in55
1

t
@P# if P.0

0 if 0.P,Pm

1

t
@P2Pm# if P,Pm

, ~15!

2meJ̇in5H SJ

tY
@Y2Ye# if Y.Ye

0 if Y,Ye

, ~16!

where the relaxation time is governed by the equation

dt

dt
5H 2

1

to
@t# if eD51

2
1

to
@t2to# if eD,1

, ~17!

and the basic relaxation time is

to5maxS zone area

Acs min~Dr ,Dz!
,tooD . ~18!

This formulation is designed both to approximate
model the growth of flaws in the material and to limit n
merical noise in the solution of the hydrodynamic equatio
This is in lieu of a rate dependent model for the stre
moduli. The first term is the sound transit time across
zone and prevents an instability in the numerical integrat
of the equations of motion. The second term is a zonal u
supplied time that accounts in an empirical way for the r
dependence of the material failure. The relaxation oft from
to to 0 wheneD51 helps model the coalescence of void
The time constant should be chosen to be the character
time for the disconnected flaws to grow from the size
which they are nucleated to the size of the interflaw spac

The bulk modulus is derived from the equation of sta
~EOS!. The shear modulus is supplied by the user. Two d
ferent EOSs for water were used in this work. The first is
table calculated using QEOS.14 This table is valid over a
large range in both temperature and density but is not v
accurate around the vapor dome. The second EOS was b
on the NBS steam tables.15 Although this table is very accu
rate around the vapor dome it has a limited range of valid
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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IV. RESULTS OF BUBBLE EVOLUTION AND STRESS
WAVE EMISSION SIMULATIONS

Comparisons of the stress wave emission between
extended Rayleigh model and the detailed dynamic sim
tions with LATIS have been made. The geometry is shown
Fig. 3. A large~practically infinite! volume of water is ini-
tially at temperatureT0517 °C, pressureP0510 bar, and
liquid density~'1 g/cm3!. A spherical region is then instan
taneously heated at constant density to temperatures (T0b)
ranging from 200 to 500 °C. For both models, the QEO
equation-of-state is used for the water and we assume
there is no surface tension or viscosity. The radius as a fu
tion of time is monitored as well as the energy that is emit
during the initial expansion and during the first collapse. T
temporal histories of the bubble radii, shown in Fig. 4, co
pare quite well. Both models show no bounce of the bub
for an initial temperature of 200 °C, only one bounce f
300 °C, and many bounces for 400 °C and 500 °C. The t
perature~and pressure! inside the bubble varies with time i
the opposite sense to the radius: as the bubble increase
temperature drops, and vice versa. This results from the
that the bubble evolution is nearly adiabatic.

As shown in Fig. 5~a!, the maximum bubble radius fo
the first expansion for the extended Rayleigh model is 2
less than for theLATIS simulations but there is the same tre
of increasing maximum radius with increasing bubble te
perature. The discrepancy in the bubble radius disappear

FIG. 3. Simulation geometry.
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the second expansion. Both the magnitude and the functi
form of the maximum bubble radius match quite well. T
efficiency of acoustic radiation during the initial expansi
and during the first collapse@Fig. 5~b!# show the same trend
as the maximum bubble radius—there is more energy r
ated by the extended Rayleigh model during the first exp
sion but less during the first collapse.

The different bounce behavior of the high and low initi
temperature bubbles evident in Fig. 4 can be underst
from the pressure–volume trajectories followed by mate
inside the bubble. In all cases, the evolution is approxima
adiabatic. As illustrated in Fig. 6, the adiabats have a st
pressure decline from the initial state and a flat part wh
the water exists in a two-phase~liquid-gas! state. During the
expansion and collapse cycle, bubble energy is lost by ac
tic emission to the exterior region@see Fig. 5~b!#. This loss
results in a lower pressure–higher volume position reac
upon recollapse, as indicated by the diamonds in Fig.
Hence, the second expansion is less energetic than the fi
both cases. The critical difference between the two case
the level of the two-phase pressure compared to the b
ground pressure. In the 400 °C case, the two-phase pres
is about 18 bar, larger than the background pressure o
atm, while for the 200 °C case the two phase pressure
bar, lower than the background pressure. Since expansio
driven only when the bubble pressure is larger than the ba
ground pressure, the lower temperature bubbles do not e
rience any drive from the two-phase portion of the trajecto
and therefore show a much weaker bounce than the hig
temperature bubbles.

The role of shock waves and their treatment in the t
models is discussed here. Significant shock waves are
ated by the initial bubble expansion and on subsequ
bubble collapses. The inward propagating shocks tend to
trapped within the bubble. The emission of shock wav
upon bubble expansion and collapse is included in both
ERM and LATIS model, whereas detailed tracking of th
shocks is done only in theLATIS model. Previous calcula
tions of the emission and tracking of shocks has been
cussed in the context of sonoluminescence by Roberts
Wu.7

The effect of shock wave emission is found to be gen
ally very important. For example in the 200 °C case illu
f
FIG. 4. Bubble radius as a function o
time for ~a! the ERM and~b! for LATIS.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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25Phys. Fluids, Vol. 13, No. 1, January 2001 Extended Rayleigh model of bubble evolution
FIG. 5. ~a! Maximum bubble radius as
a function of initial bubble tempera-
ture for the first and second expansio
for the extended Rayleigh mode
~ERM! andLATIS; and~b! the acoustic
efficiency as a function of the peak
bubble temperature for the first an
second emission of acoustic wave
The efficiency is defined as the energ
emitted into the acoustic wave divide
by the thermal energy required to hea
the bubble up to its initial temperature
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trated in Fig. 4, almost all of the energy in the first bubb
oscillation is dissipated as shock energy during the first c
lapse. The good agreement between the two models indic
that the approximate treatment of the shock emission in
ERM is adequate to predict the bubble dynamics with sh
emission. To achieve this accuracy we have found that b
the terms inṘ/cS in Eq. ~1! resulting from the Kirkwood–
Bethe hypothesis as well as the correction to the reflec
factor ~F! described in the Appendix must be included in t
ERM. If one drops theṘ/cs in the last term of Eq.~1! there
is a 25% or greater discrepancy between the ERM andLATIS

in the energy radiated into the shock. For the cases which
consider, the maximum value ofṘ/cs is 0.5. These large
values ofṘ/cs is one of the reasons that we felt it was ne
essary to benchmark the ERM against a compressible hy
dynamic model. Dropping the correction to the reflecti
factor was found to lead to a factor of 2 discrepancy in
amount of shock energy radiated and in the maximum rad

FIG. 6. Adiabats in theP–V plane for initial temperatures of 200 an
400 °C. The initial points are atV51 and high pressure. The highest poin
reached on bubble collapse are indicated by diamonds.
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Tracking the shock waves inside the bubble was fou
not to be important to determine the bubble radius. This
indicated by the good agreement between the results of
two models in Fig. 4. In the ERM, the internal shock wav
are assumed to be trapped and dissipated. In order for t
to escape they would have to be at the boundary of
bubble when it collapses, a very unlikely occurrence. Th
is also a much smaller transmission coefficient out of
interior upon recollapse due to the energy that was initia
radiated into a shock~the bubble interior will not reach solid
density on collapse!. The verification of this picture is an
other reason for the comparison of the ERM to the deta
compressible hydrodynamic model.

V. RESULTS OF MATERIAL FAILURE SIMULATIONS

The material strength and failure term in the ERM
tested using the same 1D spherical geometry shown in
3. The initial bubble temperature is 400 °C for all the sim
lations in this section. The EOS is based on the NBS ste
tables. The first case is with no material strength or failu
The ambient pressureP0 is 10 bar. The bubble radii calcu
lated from the ERM andLATIS are shown in Figs. 7~a! and
7~b!, respectively. The agreement between the two mode
incredibly good. For the second case, shown in Figs. 8~a! and
8~b!, the ambient pressure is reduced toP051 bar, the shear
modulusm is set to 300 bar, the shear failure stressY0 to 10
bar and the shear failure straine0 to 831025. These param-
eters model a perfectly elastic material which fails imme
ately and completely~sincee0 is so small! when the failure
stress is exceeded. The calculations of the bubble radius
the maximum radius to which the material has complet
failed agree well, with theLATIS calculations indicating
about 4% larger damage radius than the ERM. We note
the maximum bubble radii are approximately equal for t
two cases shown in Figs. 7 and 8. The material strength
failure has acted as an effective ambient pressure of 10
For the third and final case, the complete failure is delay
by using a failure straine0 of 0.24. Results from aLATIS

simulation are shown in Fig. 9. It is not possible to do t
equivalent simulation using the ERM because the mate
failure model in the ERM includes only a failure radius sep
rating the failed region on the inside from the elastic reg
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 7. Bubble radius as a function o
time for ~a! the extended Rayleigh
model and~b! for LATIS. Case 1:P0

510 bar,Y050, m50.
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outside. It does not allow partial failure as is found in t
general case, e.g., fore050.24. Figure 9 displays thre
curves giving the results of this simulation. The first is t
bubble radius. The maximum radius is reduced 30% co
pared to case 2 shown in Fig. 8~b! by delayed coalescence
which has raised the effective applied pressure above 10
The second curve is the radius to which the material
completely failed. The third curve delineates the dividi
line between the region of partial failure and no failure. F
ure 10 shows examples of typical stress–strain curves for
three regions shown in Fig. 9. The first is that of a perfec
elastic stress–strain curve~undamaged material!. The second
is that of material that has started to undergo failure but
not yet totally failed. The final curve is that of material th
has totally failed and will no longer support any stress.

The next three figures~Figs. 11–13!, show the details of
the evolution of the threeLATIS simulations just discussed
Three quantities are displayed. The first is the density mu
plied by a factor of 3, chosen for convenience of display. T
other two quantities are the log10 of the pressureP and the
negative of the radial stress,2Srr , measured in bar. Nega
tive quantities correspond to negative values of the qua
ties. The first case, Fig. 11, shows the pressure wave mo
away from the bubble. It leaves behind the pressure pro
predicted by the Rayleigh model. The second case dem
strates the effect of material strength and failure. Figure
shows the spatial distribution of the pressure, density,
~deviatoric! radial stress at several times. As the acous
wave moves away from the bubble, it has a much gre
Downloaded 02 Feb 2003 to 216.88.102.27. Redistribution subject to A
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pressure than radial stress. This is because of the small s
modulus, 300 bar, compared to the bulk modulus of wa
22 kbar. The radial shear stress is still enough in this wav
cause failure of the material out to 200mm as indicated by
the zero value of the radial stress out to this radius at 0.2ms.
For longer times the stress builds up to the failure stress
10 bar as one approaches the bubble. At this point the m
rial can no longer support radial stress; the material fails
the stress is transferred to a pressure of 10 bar whic
communicated to the bubble wall. Since the total stress
continuous, the deviatoric part outside the region of failu
will be taken up by the pressure inside the region of failu
as illustrated in the region near 950mm in Fig. 12~c!. Also
note that the deviatoric radial stress is approximately equa
magnitude to the pressure for the latter time bubble evolu
seen in Fig. 12~c!. The radius of damaged material is e
tended to almost 1 mm by the bubble motion.

The final case, Fig. 13, demonstrates the effect
gradual failure. The stress pulse propagates out of the p
lem causing some degree of damage to a 250mm radius.
This is indicated by the radial stress being clamped at 10
in Fig. 13~b!. During the longer time bubble evolution, Fig
13~c!, one can see the radial stress build up to a maxim
value of 10 bar as the bubble wall is approached from la
radii. As one further approaches the bubble wall this str
decreases to zero as the material totally fails and the stre
transferred to a pressure of 20 bar that is communicate
the bubble wall. It is this increased pressure which is resp
sible for the decreased bubble radius.
f

-

FIG. 8. Bubble radius as a function o
time for ~a! the extended Rayleigh
model and~b! for LATIS. Case 2:P0

51 bar, Y0510 bar, m5300 bar, and
e05831025. Solid line is the bubble
radius. Dotted line is the maximum ra
dius to which the material has failed.
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VI. RESULTS OF INTERFACE INSTABILITY
SIMULATIONS

The growth of interface instabilities has been stud
using the same geometry shown in Fig. 3. The ambient p
sureP0 was 1 bar, the initial bubble temperature was 500
the surface tensions was 70 erg/cm2, and the equation o
state was QEOS. The assumed surface tension is approp
to our idealized scenario in which the temperature profile
a discontinuity at the bubble surface. In a real situation w
a smooth temperature profile, the surface tension may
much less since the liquid just outside the bubble would
heated to a temperature near boiling. In either case, the
face tension is not a very important effect. We assume
d l!R, in accordance with Plesset.10 We also maintain the
assumption of no heat conduction and assume that the v
pressure inside the bubble is small, as discussed in Se
For the particular case under consideration, the assump
of no heat conduction is expected to be valid for mod
numbers less than aboutl 5130. This results from the fac
that the conduction heat transport time scale across a
tance equal to the wavelength of the mode is longer than
bubble collapse time~10 ms! for these modes. For smalle
bubbles, conduction might be important at smaller mo
numbers.

The growth of the instabilities is shown in Fig. 14.
Fig. 14~a! we show the growth of thel 510 and l 5100
modes, using the WKB approximation, namely,z l

5z l0 exp@*gl1dt#, with eigenvalues found from Eq.~6!. This
approximation is valid when the time rate of change of

FIG. 9. Bubble radius as a function of time forLATIS. Case 3:P051 bar,
Y0510 bar,m5300 bar, ande050.24. Solid line is the bubble radius. Do
ted line in the maximum radius out to which the material has totally fail
Dashed line is the radius out to which there is some failure.

FIG. 10. Examples of stress–strain relationship for~a! perfectly elastic or
undamaged material,~b! material which has partially failed, and~c! material
which has totally failed.
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coefficients is less than the instability growth rate, 1/ug1u,
and is much easier to calculate than the solution of Eq.~4!,
which is more generally valid. Thel 510 mode grows more
than a decade during each collapse of the bubble. Thl
5100 mode is stabilized by the surface tension which res

.

FIG. 11. Density~r, solid line!, pressure~P, dashed line! vs radius. Density
is multiplied by three with units of g/cm3. The pressure is displayed a
log10(P), whereP is in bar. Each panel is a snapshot at the time indicat
The arrows indicate direction of motion. The material parameters areP0

510 bar,m50, Y050.

FIG. 12. Density~r, solid line!, pressure~P, dashed line!, and radial stress
~2Srr , dotted line! vs radius. Density is multiplied by three with units o
g/cm3. The pressure is displayed as log10(P), whereP is in bar. The radial
stress is displayed as log10(2Srr ), where Srr is in bar. Each panel is a
snapshot at the time indicated. The arrows indicate direction of motion.
material parameters areP051 bar, m5300 bar,Y0510 bar,e05831025.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 13. Density~r, solid line!, pressure~P, dashed line!, and radial stress
~2Srr , dotted line! vs radius. Density is multiplied by three with units o
g/cm3. The pressure is displayed as log10(P), whereP is in bar. The radial
stress is displayed as log10(2Srr ), where Srr is in bar. Each panel is a
snapshot at the time indicated. The arrows indicate direction of motion.
material parameters areP051 bar, m5300 bar,Y0510 bar,e050.24.

FIG. 14. Growth of the interface instability is shown by the size of the mo
normalized by its initial amplitudez l /z l0 . ~a! Mode amplitude vs time as
predicted by the WKB approximation.~b! Maximum-in-time amplitude vs
mode number. The filled circles are determined by solving Eq.~4!. The open
circles are the result of the WKB approximation.
Downloaded 02 Feb 2003 to 216.88.102.27. Redistribution subject to A
surface perturbation. The behavior of the instability as
function of mode number is demonstrated in Fig. 14~b!.
There we show the maximum growth over time vs mo
number, using two levels of approximation. The first is t
WKB approximation as used for Fig. 14~a!. The second level
of approximation uses the solution of Eq.~4!, a second order
ODE with time varying coefficients. This is more accura
than the WKB approximation. For smalll, the maximum
instability occurs for smallR, R̈,0, andrb,rs , but more
importantly, when the time rate of change of the coefficie
is large. This is the reason for the discrepancy between
two approximations seen in Fig. 14~b! at smalll. On a close
examination of the evolution of Eq.~4! for l 51, it is found
that the mode can grow to the amplitude predicted by
WKB approximation during the first collapse, but the com
plicated evolution prevents it from growing further. It is a
parent that the growth of low mode number instabilities
complicated. The more precise treatment, using Eq.~4! is
necessary to correctly predict the growth rates for th
modes. For higher modes, the WKB approximation does
adequate job. Note that the maximum instability in the so
tion of Eq. ~4! is for l 510 as predicted by Eq.~8!. This
WKB-based prediction holds for these higher modes.

All modes up tol 510 were found to be significantly
unstable. There are two important seeds for these insta
ties. The first is the nonspherical symmetry imposed b
laser fiber which will seed thel 51 mode with at least a few
percent amplitude. The second is the presence of a mat
interface such as a vessel wall. The reflection of the acou
radiation off of this interface and the subsequent imprint
this wave on the bubble motion when it impinges on t
vessel wall would be expected to seed a significantl 52
perturbation. The growth factors shown in Fig. 14 are qu
large and might be expected to alter the bubble evoluti
Without instability, the bubble bounces more than 10 tim
Since these modes will grow about a decade per collapse
unlikely that the bubble will be able to bounce more th
once or twice.

To further address the role of instabilities in the dyna
ics of laser generated bubbles we have performed a t
dimensionalLATIS simulation.16 This simulation accounts fo
the nonspherical creation of a bubble. In theLATIS simula-
tion, 0.312 J of energy is deposited in a 12mm layer at the
end of a laser fiber. The shape of the bubble is shown in
15 at two times. The rigid-nature of the fiber acts to contin
ously drive perturbations from a spherical flow in the su
rounding water. The fiber predominantly drives thel 51
mode with a perturbation of at least a few percent. This le

e

e

FIG. 15. 2DLATIS simulation of bubble evolution displaying anl 51, bubble
and spike instability.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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to the classic bubble and spike shape17 with Kelvin–
Helmholtz roll-up, seen at 66ms in Fig. 15~b!.

An extended-Rayleigh model simulation has been d
for comparison to the 2DLATIS simulation. The geometry fo
the ERM is shown in Fig. 16. Outside of a 50mm hard core,
0.312 J is deposited into a 12mm shell. This geometry re
produces both the initial surface area and volume of the
calculation. The hard core is a zero displacement bound
It is used the mimic the effect of a rigid optical fiber. Th
growth of the l 51 mode is shown in Fig. 17. There a
significant differences between the 2DLATIS calculation and
the ERM calculation. TheLATIS calculation has a strong pe
sistent 2D perturbation~the fiber!, which continuously drives
the bubble dynamics, whereas the ERM model has only
initial perturbation of small amplitude. Despite these diffe
ences, a qualitative agreement in the behavior is seen
tween the two models. The size of thel 51 mode is pre-
dicted by the ERM to grow by more than a decade during
bubble collapse~Fig. 17! in qualitative agreement with th
growth of the bubble and spike seen in the 2DLATIS simu-
lation @Fig. 15~b!#. Thus the results of the 2D simulation
combined with those of the ERM support the notion that
Rayleigh–Taylor instability can be important in the bubb

FIG. 16. Geometry used for the ERM to compare to the 2DLATIS simula-
tions.

FIG. 17. Growth of the interface instability as a function of time as p
dicted by the ERM and the WKB approximation. This is for the geome
shown in Fig. 16. Point A corresponds to the 2DLATIS simulation in Fig.
15~a!. Point B corresponds to the 2DLATIS simulation in Fig. 15~b!.
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dynamics during the collapse phase and can limit the num
of bubble bounces.

VII. DISCUSSION AND CONCLUSIONS

We have presented an extended Rayleigh model for
dynamics of laser generated vapor bubbles. The extens
beyond previous work include the addition of heat at t
onset of bubble expansion, the effects of material stren
and failure, a more accurate accounting of the partial refl
tions of stress waves at the surface of the bubble, and
accurate equation of state. In addition, we presented a
scription of the interface instability expected during bubb
evolution.

Three components of the physics contained in the ER
were benchmarked againstLATIS simulations—acoustic ra
diation, material strength and failure, and interface insta
ity. Good agreement was found for all three. Taking in
account partial reflection of the acoustic wave at the bub
interface is important to find agreement between the ER
andLATIS. There is a factor of 2 or more discrepancy in ho
much energy is radiated and about the same in maxim
radius, if the reflection factor~F! is not included. The form
of the reflection factor that we derived has been verifi
Material strength and failure was found to act as an increa
ambient pressure, with a value equal to the shear fai
stress of the material. This is manifested as smaller m
mum bubble radii and shorter bubble oscillation periods. T
bubble was found to be significantly unstable to interfa
instabilities on collapse—the magnitude of the oscillati
growing a decade per collapse. With such growth, it is u
likely that bubbles generated by optical fibers will be able
bounce more than a few times as would a strictly spher
bubble.

It was found that the ERM model executed 300 tim
faster than the compressible hydrodynamic simulation c
on equivalent computers. The extended Rayleigh model
proven accurate and fast. We suggest that it will be useful
quick calculations to aid in the design of devices using la
generated vapor bubbles.
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APPENDIX: DERIVATION OF EXTENDED BUBBLE
DYNAMICS EQUATION

In this Appendix an equation for the temporal evolutio
of a bubble is derived. This equation is a second order O
for the bubble radius as a function of time. What differen
ates this equation from previous work is a more compl
treatment of the generation of the pressure wave. This m
complete treatment is necessary to have agreement bet
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the ERM andLATIS. The Kirkwood–Bethe hypothesis i
used so that the equation will be valid for weak shocks@that
is bubble wall Mach number5Ṙ/cs<O(1)#. The equation is
not linearized in terms of the parameterṘ/cs!1 ~that is, it is
not reduced to the acoustic wave limit!. The weak shock is
also allowed to both transmit and reflect at the bubble bou
ary. Both the weak shock nonlinearity and the partial tra
mission of the shock into the bubble are necessary to h
good agreement between the ERM andLATIS. The derivation
closely follows that of Knappet al.5 The following discus-
sion will focus on the essence of the derivation and w
highlight the additions.

The starting point is the continuity equation

2u

r
1

]u

]r
52

1

c2

dh

dt
, ~A1!

the momentum equation

du

dt
52

]h

]r
, ~A2!

and the wave equation

S ]

]t
1~c1u!

]

]r D S r S h1
u2

2 D D U
r 5R

5
r

c

dh

dt
~12F !~c2u!,

~A3!

wherer is the radius,u is the radial fluid velocity,c is the
sound velocity, andh is the enthalpy. The form of the left
hand side results from the Kirkwood–Bethe hypothesis,
discussed in the text. The form of the right-hand side is
pothesized subject to the requirement that it correctly
counts for the partial reflection of the in-going shock in t
limit of small Mach number. IfF51, ~total reflection! the
right-hand side of Eq.~A3! equals 0 and Eq.~A3! reduces to
the one found in Knappet al.5 This hypothesis needs to b
verified by comparison to detailed dynamic simulations.

The reflection factorF is determined by analyzing th
geometry of the scattering of a wave by a moving interfa
~see Fig. 18!. In this figureu5¹w. Using continuity of pres-
sure at the boundary

rs

]

]t
~wo1wR!5rb

]

]t
wT , ~A4!

and continuity of speed at the boundary

]

]x
~wo1wR!5

]

]x
wT , ~A5!

FIG. 18. The scattering of a wave by a moving interface.
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along with the relationships

co5cs2Ṙ, cR5cs1Ṙ, cT5cb2Ṙ,

the following equation is derived for the reflection factor:

F5
1

2 S 12
AR

Ao
D5

rs2rbṘS cb2Ṙ

cs
22Ṙ2D

rb

cb2Ṙ

cs1Ṙ
1rs

. ~A6!

Now Eqs.~A1!–~A3! can be combined and the result eval
ated atr 5R to give

RR̈~12Ṙ/cs!1 3
2 Ṙ2~12Ṙ/3cs!

5h~11Ṙ/cs!1F
R

cs
ḣ~12Ṙ/cs!. ~A7!

An implicit assumption in this derivation is the negle
of the transmitted wave generating a secondary reflected
transmitted waves after being reflected at the bubble cen
These multiple reflections only contribute to the tail of t
outgoing wave because they are time delayed by at l
2R/cb . Furthermore, the bubble expansion traps the ingo
wave inside the bubble via the reduction in the bubble d
sity. Therefore, the contributions of the reflected waves h
been ignored in the derivation of Eq.~A7!.
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