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Two-dimensional Rayleigh model for bubble evolution in soft tissue
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The understanding of vapor bubble generation in a soft tissue near a fiber-optic tip has in the past
required two-dimensiongPD) hydrodynamic simulations. For 1D spherical bubble expansions a
simplified and useful Rayleigh-type model can be applied. For 2D bubble evolution, such a model
has not been developed. In this work we develop a Rayleigh-type model for 2D bubble expansion
that is much faster and simpler than 2D hydrodynamic simulations and can be applied toward the
design and understanding of fiber-based medical therapies. The model is based on a flow potential
representation of the hydrodynamic motion and is described by a Laplace equation with a moving
boundary condition at the bubble surface. In order for the Rayleigh-type 2D model to approximate
bubble evolution in soft tissue, we include viscosity and surface tension in the fluid description. We
show that the 1D Rayleigh equation is a special case of our model. The Laplace equation is solved
for each time step by a finite-element solver using a fast triangular unstructured mesh generator. Our
simulations include features of bubble evolution as seen in experiments and are in good agreement
with 2D hydrodynamic simulations. @002 American Institute of Physics.

[DOI: 10.1063/1.1467654

I. INTRODUCTION quires an order of magnitude fewer spatial zones than the 2D
compressible hydrodynamic simulations.

In many medical therapies, bubbles are generated by Our model is based on introducing a flow potential
short pulses of laser light delivered through an opticalwhich is a solution of Laplace’s equatidrihe fluid velocity
fiber!=* Vapor bubbles are widely applied to cutting and outside the bubble is= —V . This model is valid through-
breaking up of tissue by the generation of acoustic wavesut most of the bubble’s expansion and collapse phases since
and by bubble expansion and collapse. For example, bubbleke fluid outside the bubble is incompressible, and irrota-
are used in laser-assisted coronary angioplasty for dissolvingonal to a good approximatichA flow potential method
blood clots, in ophthalmology and dermatology for removingwas applied in previous work to treat cavities near and far
melanin structures, and in intraocular surgery for photodisfrom boundaries, using finite difference and boundary inte-
rupting tissué- Vapor bubble research in 1D and 2D has agral methods= ! In this work we apply a general dynamic
long history in a variety of applications, in relation to bubble finite-element code which was designed for solving 2D ellip-
expansion and collapse far from boundaries and next to freic partial differential equations over an arbitrary bounded
and rigid boundaries;* domain with moving boundary conditions. The code pro-

Atheoretical description of the bubble evolution requiresvides detailed information throughout the fluid domain. It
two-dimensional2D) hydrodynamic simulations and there- allows up to fourth-order polynomial approximations over
fore sophisticated computational capabilitéd. For 1D  the generated mesh. However, we found that second order
spherically symmetric bubble evolution there exists a simpli-was sufficient to obtain accurate and smooth solutions. As in
fied treatment, based on an extended Rayleigh model, whicthhe Rayleigh model, we assume that the inside of the bubble
is represented by an ordinary differential equation that can bes uniform in pressure and density and we derive a moving
easily solved:® For 2D bubble effects such as those createcboundary condition forg at the bubble boundary. For the
by the presence of a cylindrically symmetric fiber optic, suchlimiting 1D case, our model reduces to the known 1D Ray-
a treatment does not yet exist. leigh model. For the general case we solve a Laplace’s equa-

In this work we develop a 2D Rayleigh-type model tion in cylindrical geometry with Dirichletspecified¢) and
which can be applied toward several medical applications. Ilmomogeneous Neumanrspecified normal component:
order to simulate bubble evolution in soft tissue problemsg@/dn=0) boundary conditions applied to the moving
we have extended the model to include viscosity and surfackubble boundary. Dirichlet boundary conditions are applied
tension. Adding viscosity and surface tension also contriben the bubble boundary and at infinity, where we ¢et0.
utes to the stability of the numerical procedure. The proposedhe homogeneous Neumann boundary conditions are ap-
method is two-to-three orders of magnitude faster and replied on the fiber boundary and on the axis of symmetry,
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where the normal flow velocity is zero. For every time step =dp

an unstructured mesh finite-element sol@MFES) is used dh=—dp/p, h(w)—h(r)zf —, (4)
to update the triangulation of the region outside the rp

bubble!?*3 whereh(r) is the enthalpy at, and h(«) is the ambient

Application of the model assumes an instantaneougnthalpy at large.
deposition of laser energy in an aqueous system at the tip of For many cases of interegt~constant, i.e., we may
a fiber. We obtained solutions in agreement with detailedeplaceh(e)—h(r) in Eqg. (4) by (p(e«)—p(r))/p and get
hydrodynamic calculations and consistent with experimental 2
- : d¢ p—p. U
characteristics of the expansion and the collapse of the == -, (5)
bubble away from the fiber*4 dt P 2

‘The 2D Rayleigh-type model presented in this work,whered/dt=(d/4t)+u-V, p is the pressure at, andp.. is
which includes viscosity and surface tension, can be appliethe ambient pressure. Let parametrize the distance along

toward the design and understanding of fiber-based medicghe bubble boundary. Then, by enforcing E&) at the
therapies in more realistic geometries. The flow potentiahybble boundary, we get

method can be extended to include other physical mecha- 5
nisms that affect tissue behavior, including strength and fail- d®(6) _ P—p. U%H) 6)
ure properties. These mechanisms were treated successfully — dt p 2

by the 1D Rayleigh model and the results were in agreemeqfte

with 1D hydrodynamic simulatiorfs.We believe that the the flow potentiald (@), along the boundary. Equatiof)

sam_?hcanl be (:(:Ee possub_ly n ;hﬁ 2D.ITaySIe|gh”cased_ represents the boundary condition for the bubble expansion.
€ plan of the paper 1S as 10llows. In Sec. 1TWe dISCUSS = ¢, incompressible flow, we may substitute

the physical model. The numerical procedure is representegConstant in Eq(1), and by usingu=—V ¢ we obtain a

in Sec. lll. Computational results and discussion are given irf_ : : ! :
. . aplace equation for the region outside the bubble, i.e.,
Sec. IV and concluding remarks in Sec. V. P d 9
V2¢=0. (7)

Il. THE PHYSICAL MODEL The solution of Eq.(7), along with the moving boundary
condition, Eq.(6), represents the main ingredients of our 2D

We first consider a vapor bubble generated in water by @ime-dependent bubble model. In the following, we assume

short-pulse laser depositing energy near a fiber tip. Later, thgyat the boundary pressufeis the pressure, inside the

effects of viscosity and surface tension will be added. Undergpypble at all times.

standing the subsequent bubble evolution requires cylindri-  \we can show that Eq¢6) and(7) are consistent with the

cally symmetric 2D simulations or analysi$> We assume 1D Rayleigh equation. For the 1D spherical case the solution

that the bubble interior is uniform in pressure as in a Rayof Eq. (7) is ¢=C/r. Using u=—dp/ar, we get ¢

leigh model, and that it evolves adiabatically with entropy =R?U/r. Inserting in Eq. (5) and evaluating on the bubble

Sy. After applying an equation of staté€OS within the  poundary ( =R), we get

bubble, any of the quantitiep (pressurg p (density, T

(temperaturg or & (specific energy together withS; will RRL §U2= P—p. ®)

determine the remaining quantities. 2 ’

which is the 1D Rayleigh equatidh.

By assumingp~constant, we have so far ignored the
For the region outside the bubble, the relevant hydrodyacoustic emission outside the bubble. However, the acoustic

., a relation between the pressi®evelocity U(6), and

A. Vapor bubble generation in water

namic equations are the continuity equation emission for a laser depositing its energy close to the fiber tip
can be easily approximated. The acoustic wave is emitted on
ap . - . .
—+V-(pu)=0, (1) a short time scale relative to the bubble expansion. The ini-
dt tial bubble velocity perpendicular to the fiber tip for a uni-
and the momentum equation form laser deposition 1§
du Y Us=po/(2pCs), (99
—+u~Vu=——p, 2 © o .
ot P where c¢g is the adiabatic sound speed in watex,€1.5
wherep, p, u denote the density, pressure, and velocity of the 10° cm/s), po is the initial bubble pressure, ansis the
fluid outside the bubble, respectively. density outside the bubble. The acoustic energy emitted from

We assume a flow potentidl such thatu= —V ¢. Con-  the bubble equals the work done by the expanding bubble
sequently, we may integrate E@) from r to « and obtain, €s= x;p dV during the emission time;.'” The initial

independently of the bubble boundary trajectory bubble volume isVy=LoA, where L, and A denote the
ip 1 bubble initial width and its cylindrical cross-sectional, area
iy + E(V $)2=h()—h(r), (3 respectively. During the acoustic emission the bubble volume
increases toV,=L;A, where L;=Ly+ust,;. Since the
where bubble expands adiabatically, we have
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es=Mmy(go—¢1), (9b) laser increases the bubble temperaturel goand the two
quantitiespy, Ty determine the constant entro®4 of the
bubble, the initial pressune,, and the initial specific energy
. An equation of statéEOS of water is used, based on
S steam table€: We useS, to obtain the adiabat of the

wheremy is the mass inside the bubble angl, ¢, are the
respective specific energies before and after the acoust
emission process. The acoustic energy is then subtract

from the initial bubble energy to give the available eNergYsid inside the bubble, which provides the pressure as a

for bubble expansion. function of density. A homogeneous adiabatic acoustic emis-

After acoustic emission, there is still a process of com-g; o ¢ o from the initial bubble energy,, provides cor-

presilbmty,d_wthmh effect::]lvely dend? tvr\]'h?% the _?t:r?uAS:'fhW?\’erected values for the pressurp,f, temperature ), den-
reaches a distance on the oraer of the fiver widh. efin ity (p1), and specific energye() at an acoustic emission

collapse stage of the bubble in the 2D case, there is anOth'ﬁFnet The value ok can be obtained from Eqé2a), (9b)
episode of acoustic emission. However, most of the bubblg | tﬁé estimate, =21 ,/c ' '
energy is dissipated by heating of the close surroundings, ancrI Since the flow potentisal model does not accurately rep-
the bubble rebound is usually small. This dissipated energy, ¢

: : . ) ent the bubble expansion for very short times, we must
spreads away from the fiber tip by the induced flow in thedetermine an initial potential flow time,>t,;>t, beyond
ambient fluid.

which our model is valid. This is a characteristic time given
by t,=4r¢/cg, in which the acoustic wave samples a com-
plete cycle of the fiber cross section. The initial data for the
In order to include viscosity and surface tension in thepotential flow model at, can be first obtained by applying a
model, we need to rewrite Eq6). The pressuré® at the 2D hydrodynamic code to the early time evolution of the
bubble boundary, instead of being simply the bubble pressursubble. Such a simulation includes the geometry of the fiber,
pp, is now combined with the contributions from viscosity the velocity profile along the bubble boundary, and the pres-
and surface tensiof¥-?°The pressure introduced by the sur- sure (p,), temperature T,), density ,), and specific en-
face tension is given by,=—y(1/R;+1/R;), where R, ergy (e,). (Note that any one of these thermodynamic quan-
andR, are the major radii of curvature of the bubble bound-tities together witts, determines the others as wdliln Sec.
ary andvy is a constant depending on the properties of thdV B we will show that the conditions at, can be deter-
surrounding fluid® For a bubble boundary which, at a given mined by physical considerations independent of the 2D hy-

B. Vapor bubble generated in viscous fluid

time is defined byz=f(r), a simple procedure yielts drodynamic simulation. This enables us to obtain a solution
that is not tied in any way to the hydrodynamic simulations.

121312 Mf2
1:%, 2:# (10) In the calculations, we use the unstructured mesh finite-

element solvefUMFES), which is a general finite-element

These relations hold for an arbitrary body of revolution gen-solver for 2D elliptic partial differential equationge.g.,
erated byz=f(r). The first radiuR,, simply represents the Laplace’s equationover an arbitrary bounded domain, with
curvature of the planar curve=f(r). For example, if the Dirichlet (specified ¢), homogeneous Neumanni¢/Jn
body of revolution is generated by a straight line, then=0) or mixed[(d¢/dn)+o¢= 7], with o and 5 specified
£7(r)=0 and the radius of curvature is infinite. The secondn the boundarnyboundary conditions’**The density func-
radius of curvatureR,, is the result of the rotation of the tion of the generated meghe., of the mesh triangular ele-
curvez=f(r). ments is supplied by the user.

The pressure added by the presence of viscosity is given The validity of the initial geometry and the initial veloc-
by p,=2u(du,/dr,), wheredu,/dr,, the normal deriva- ity profile at timet, at the bubble boundary can be verified
tive of the velocity component,, is evaluated at the bub- USINg an energy conservation principle. Indeed, by solving
ble’s boundary angk is the viscosity of the soft tissd2°  Laplace’s equation outside the bubble at titae we obtain

The pressure at the bubble boundary is thus taken as the potential and velocity of every fluid element and conse-
11 quently the total kinetic energgy of the ambient fluid. Since

P=py+2u %_ y(R_lJr R_2 (11) the energy dissipated during<t<t, is small, we have
n

) (e1—e2)Mp=ey, (12)
In the case of the 1D Rayleigh model, we haue _ o
—UR?/r2, whereR and U are, respectively, the bubble ra- Wheremo is the mass inside the bubble anthe;=mqe

dius and velocity(on the boundary Therefore, gu/dr)g ~ — ©s» With & being the acoustic energy emitted by E()

— —2UR?/R3=—2U/R, which implies the familiar result and(9b). _ _

P,=—4uU/R. SinceR;=R,=R as well, we obtain from ~The numerical procedure is as follows.

Eq. (1) P,=27/R as expected. Initial step: Solve Laplace’s equation in cylindrical geometry

outside the bubble, using the initial velocity profile on the
bubble boundary, from the results of a 2D hydrodynamic
code at time, or from independent analysisee Sec. IV

At the initial time to=0, we assume that the bubble The initial pressure, temperature, and density inside the
starts as a cylinder with known radius and layer depositiorbubble are the previously defingd, T,, p,. These quanti-
width Ly at a given room temperature and initial dengity  ties are derived from the bubble’s dimensions at ti;as-
inside the bubble. The deposition of energy by a short-pulsesuming constant entrop§,. At “infinity,” i.e., at boundary

Ill. THE NUMERICAL PROCEDURE
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FIG. 1. The initial bubble in cylindrical coordinatez obtained from 2D

. FIG. 3. Triangulation outside the bubble in cylindrical coordinajgsat t
hydrodynamic code after 300 ns. g y e

=300 ns.

points far from the fiber tip and the bubble boundary, we 2007

assume homogeneous Dirichlet boundary conditions, ¢.e.,
=0. Along the surface of the fiber and the problem axis of
symmetry, we take a zero normal fluid velocity, i.e#/dn 150f
=0. At the bubble boundary we update the flow potential
after each time step. We thus obtain the flow potential distri- -
bution ¢, outside the bubble boundary. On the bubble E100
boundary we denote the flow potential B, and the pres- =
sure there is simply,=p,.
At the nth time step 6=3) we perform the following.
Step 1:Use Eq.(6) to update the flow potentials

- 501

2
n—-1

2 ’

1 U
O,=0, +AL, 4 ;(Pnfl_pw)_ (13 ’ 0

~50 0 50 100
z(um)

whereP,_, is the bubble effective pressure on the boundary

as presented by Ed11), p the outside fluid density, and FIG. 4. Defining the bubble’s three lengthss, ry, I\

o, 4, U,_; are the flow potential and velocity at the bubble

boundary during ther(— 1)th time step, respectively.
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i(ns) FIG. 5. The bubble’s lengths vs time for ambient presgure 10 bar: our

model(solid lines compared with 2D hydrodynamic calculatiofdiscrete
points:o, +,* denoterg, ry, r_, respectively. Initial conditions inside the
FIG. 2. The bubble horizontal velocity profile calculated by the 2D hydro- bubble taken at=300 ns are:;p,=40 bar, T,=249 °C, p,=0.33 g/cnf;
dynamic code. The potential flow model is valid approximately after 300 ns;the initial horizontal and normal velocities of the bubble front and upper
when this velocity reaches an asymptotic value of approximately 4000 cm/sedge are 4000 cm/s and O, respectively.
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Step 2:Solve Laplace equation fap,, outside the region The adiabat of5; is used to calculate the new bubble pres-
using UMFES; then update the velocitiels at the bubble surep, . For the next step we ugs,, p,, U, in EqQ.(13) to
boundary using calculated,, , ;.

U,=—Vén, (14

whereV ¢, is calculated numerically frong,. Since¢ is V. RESULTS AND DISCUSSION
approximated linearly over each mesh triangle), is con-
stant over each element.

Step 3:Update the bubble boundary using the velocities
obtained in step 2 and the time intenzs, .

Step 4:Update the bubble densigy, by calculating the
bubble volumeV, and applying mass conservation

Throughout this work we have assumed a fiber of outer
radiusr;=115xm, including 15um of cladding and a 100
um laser core in which the laser beam propag#ses Fig.

1). The upper right-hand corner of the fiber is curved and
simulated by a quarter circle of radius L. We consider a
homogeneous laser absorption length ofim and assume
PnVin=poVo. (15  the bubble to be initially at room temperature of 17 °C with
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FIG. 7. Bubble expansion and col-
lapse in cylindrical coordinates z at
various times forp,,=1 bar. The ini-
tial conditions are those of Fig. 1.

=262°C, p;=0.78g/cnl, p,=74bar, respectively. The
deposition by the laser, the bubble temperature increases tvop in density causes the bubble width to increase from 7 to
350 °C. Using the NBS steam tabféswe obtain the bub-
ble’s entropyS,=2.897x 10’ erg/g, which remains constant
throughout the whole process. The initial pressurepis
=6008bar and the initial specific energy ig=1.197
x 10%%erg/g. By using Eqs(9a) and(9b), we can derive an

Since the flow potential model is not valid at the very
early stage of the bubble expansion, we first use a 2D hydro-
dynamic code to obtain the bubble geometry and the bubble
boundary velocity aftet,=300ns. At this time the bubble

adiabatic acoustic emission of about 5% which lasts aboutvo-dimensional projection(approximately maintains a
t;=9 ns and reduces the bubble energy to a lower value afectangular shape with length 11&n and width 15um and
e,=1.136x10%erg/g. Consequently, using the NBS steamexpands to the upper edge of the fiber’s curved cofRy.

tables and the adiabatic nature of the process, we find that tHg. The z component of velocity of the bubble as obtained

initial from the 2D hydrodynamic code is illustrated in Fig. 2. It

temperature, density,

and pressure becormg
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FIG. 8. The bubble’s lengths vs time for ambient pressure 1 bar and initial temperaturég,= 200 °C, 250 °C, 300 °C.

varies very slowly in the time interval 08s<t<1 us and 1. Case 1. p.=10 bar
reaches an asymptotic value of 4000 cm/s. This asymptotic

locity is al matelv th | lculated b 2D Since the detailed hydrodynamic calculation is very time
velocily 1S also approximatély the valué caiculated by a consuming, it is more convenient to provide a comparison

hydrodynamic code for the normal velocity at the tap ( for a shorter time scale evolution in the casg=10 bar
=ry) of the initial bubble. The normal velocity, however, rather than in the case, =1 bar

Wh'CT tperttr;':uns to tTIe bubblgs sh?rtthdlrgegiion,vls '?‘SS trﬁl' We have utilized theATis (Laser TISsuprogrant to
evlan (f)th'e 0\|/er<":}[ Ext)ansmn 0 ed 4%006' /artylng eErovide initial conditions for the 2D Rayleigh model and to
vaiue of this velocily between zero an cm/s turns ou ompare with the results at later timegTis is a general-

to have little effect on the global solution. The initial condi- purpose program for modeling laser—tissue interactions. In

tions obtained for this geometry after 300 ns arfg addition to other processes important in laser—tissue interac-

;igl%oc’/ sz?.Ssgllcrtﬁ, pZIZ?ObE}r’ an;j 82:bl.12d7 tion, LATIS solves the time-dependent compressible fluid
ergig. ypical trianguiation for a Iree bounadary quations in 2D cylindrical symmetry using a Lagrangian

. ) e
problem where the density function of the elements dependﬁnite difference numerical methddLaTis, which uses the
inversely on the distance from the fiber’s tip, is shown in '

Fig. 3 same equation of state as the 2D Rayleigh model, has been
9. S - . . previously verified against experimental data.
As illustrated in Fig. 4, for a typical time step, three

In Fig. h le’s th ii
characteristic lengths of the bubble are definggddenotes n Fig. 5 we compare the bubble's three radii computed

. . o by our flow potential model with those obtained usingis.
the distance between the right front midpoint of the bUbbleThe initial normal velocity is zero, a value that provided the

and its left rearry is the distance between the highest point est agreement with the 2D hydrodynamic computations.

of the bubble boundary and the bottom of the cladding, an%owever as previously stated, litle change has been ob-
r_is the distance between the bubble’s leftmost point on the .\ g f(’)r an initial normal vélocity of 4000 cm/s. The

cladding and the left edge of the fiber’s curved corner. At thechoice of the initial velocity profile was consistent with the

beginning, i.e., fort=300ns, we haverg=15um, ry energy conservation principleg. (12)]. In the case illus-

=15pm, 1, =0 pm. trated in Fig. 5 we getd;—e,)my=20 erg, which is in

agreement with the simulated fluid kinetic energy

=22 erg, calculated from the flow potential by integrating
We considered two cases of ambient presspres1, 10 |V ¢|? outside the bubble dt=300 ns.

bar for an aqueous system. The maximum values af,_ , ry, rg are 91, 123, and 184

A. Numerical results for water
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FIG. 9. Bubble expansion and col-
lapse in cylindrical coordinates for
p.=1bar, viscosity coefficientu
=1.35 poise, and surface tension coef-
ficient y=54 erg/cm.

therefore applied our method to this case as well, a case for

tively. The results forz were in very good agreement with which the detailed 2D hydrodynamic calculation is prohibi-
those obtained by the hydrodynamic code. Good agreemetitely time consuming. The initial conditions at the short

was also received for, andry except at about the maxi- time of 300 ns can be chosen to be the same as in case 1. The

mum expansion point, where deviation up to 15% from themaximum values of the radii, , ry, rg are obtained 398,
detailed hydrodynamic computations was observed. The gl435, and 551um and are attained at 45, 42, and 48,

bal expansion collapse process of the bubble is shown in Figespectively. The global expansion collapse process is shown

6. Towards the end of the collapse phase, the bubble coln Fig. 7. At the beginning of the process the pressure inside
lapses away from the fiber as observed in experiment age bubble is dominant and there is hardly any difference

well

14

2. Case 2: p,.,=1 bar
The physical conditions that exist in practical problemssions, compared to the 10 bar case.

usually suggest an ambient pressure of alput 1 bar. We

between the two cases. Later, the lower ambient pressure
becomes significant, and this causes a sizable increase in the
time of expansion and collapse and of the bubble’s dimen-

During the ellipsoidal-shaped collapse, as seen for ex-
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ample in the last frame of Fig. 7, the liquid forms a jet B. Numerical results for viscous fluid
directed away from the fibéF. Jet formation and bubble col-

- . . . In the following cases we took.,.=1 bar and assumed
lapse near a rigid material or elastic boundary such as bio-_ . : . . -
. . . . yarious nonzero viscosity and surface tension coefficients
logical tissue may cause material erosion and collateral

damagé® Mechanisms such as jet penetration and jet-likeWh'Ch are typical of gelatin-type soft tissues. As baseline

ejection of boundary material, elastic rebound of the boundYalues, we tooku=1.35 poise andy=>54 e_rg/cn.%.z“_The

ary, and tensile stresses from the collapsing bubble, cauggoPal expansion and collapse process is given in Fig. 9. The

enhanced ablation of the surrounding material and damageMaximum bubble size is somewhat smaller than in Fig. 7,
We also studied the sensitivity of the bubble dynamics tovhere viscosity and surface tension are not included. The

the initial temperature. This is presented in Fig. 8, wherenain difference between the two cases is that in the presence

results forT,=200°C, 250 °C, and 300 °C show significant of viscosity the bubble collapses later in time and its detach-

increase of the bubble’s dimensions with temperature. ment from the fiber occurs further away. A case with in-
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creased viscosityyw= 2.7 poise, is shown in Fig. 10. Here, assuming an adiabatic process, and using(E2).obtained a
the collapse is further delayed but ends before separatiogimilar initial frontal velocity of approximately 4000 cm/s.
occurs and the bubble is again expanding. The sensitivity ofhe associated bubble lengths as functions of time are illus-
the bubble’s dimensions to the viscosity coefficient is pretrated in Fig. 13, which demonstrates the insensitivity of the
sented in Fig. 11. A soft tissue with larger viscosity clearlyprocess to the initial geometry.
reduces the bubble’s dimensions. Since in most applications one is mainly interested in the
The velocity profile, which is very helpful in understand- approximate bubble geometry during the global expansion
ing the collapse process, is given fqu,=1bar, u process, our procedure can be disengaged from the detailed
=1.35 poise, and/=54 erg/cm in Fig. 12. During the col- 2D hydrodynamic code. It is sufficient to start with a reason-
lapse, we observe a large velocity field generated near theble initial bubble width and a frontal initial velocity for
fiber tip and aimed away from the fiber towards the bubblewhich Eq.(12) holds. For example, let us assume a potential
center. A jet is formed towards the right and pushes the liquidiow model aftert,=300 ns. This value fot, can be ob-

away from the fiber. tained as the time in which the acoustic wave samples a
_ _ complete cycle of the fiber cross section, for example
C. Disengagement from the hydrodynamic code =4r;/cs=300ns. It can also be verified by the hydrody-

The potential flow model, which is valid throughout namic code(Fig. 2) as the time where the bubble horizontal
most of the bubble expansion collapse process, is determineglocity enters the asymptotic zone of about,
by the initial velocity of the bubble boundary and by the =4000 cm/s. By virtue of Eq(12) and the relatiorL,=L,
initial bubble geometry. It is possible to approximate the ini- + Ut for the bubble width, we get a self-consistent horizon-
tial frontal velocity using physical considerations such as artal initial velocity of about 4000 cm/s. Since the initial
energy conservation principle as given in EtR), where the  bubble width atty=0 is Lo=7 um, the bubble width at,
normal velocity is taken as zero. Exact knowledge of the=300 ns isL,=19 um. This value falls inside the interval
bubble’s initial dimensions is of less significance. In fact, thelO um<L,<20 um, which we tested and illustrated in Fig.
global expansion and collapse processes for different geoni-3.
etries are very similar, provided that the initial bubble dimen-  There is a fundamental difference between the current
sions are similar. In the case pf =10 bar we calculated the 2D flow potential model and the 1D spherical Rayleigh
process over a period of 12s for bubble initial widths of model, necessitating the implementation of the initial condi-
10, 15, and 2Qum, as presented in Fig. 13. For each problemtions at a later timetg) in the 2D case. In the examples
we calculated the bubble density, pressure, and temperaturexplored in this paper, the heated region of fluid is shaped
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like a very thin pancake whose thickness is much smallethe flow and the associated 1 Aelocity field allow this early
than its radius. Therefore, the dynamics begins to evolvdubble formation.

much like a 1D heated slab. However, there is no bubble

forrr_1at|on_ fora 1D slab_m _the |ncompre_SS|bI_e fluid approxi- V. SUMMARY

mation, since the velocity is constant with distance from the
source. It is only after sound waves have traveled to the outer A potential flow method was applied to obtain a 2D
radius of the heated pancake that a radial flow can begiRayleigh-type model for bubble expansion and collapse. The
from which a bubble is formed. Thus, the 2D case requires anodel includes viscosity and surface tension terms and can
long time to set up the flow needed to form a bubble. Thethus realistically treat bubble evolution within a real soft
case is much simpler in 1D spherical geometry, where théissue. The main assumption was that the inside of the bubble
bubble begins to form as soon as the sound waves cross tie homogeneous in pressure and density, as is usually as-
thickness of the heated regions, thereby circumventing theumed in a Rayleigh model. The procedure derives the initial
need for &, time scale introduced earlier. The divergence ofconditions for the potential flow model at tinig either from
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