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Two-dimensional Rayleigh model for bubble evolution in soft tissue
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The understanding of vapor bubble generation in a soft tissue near a fiber-optic tip has in the past
required two-dimensional~2D! hydrodynamic simulations. For 1D spherical bubble expansions a
simplified and useful Rayleigh-type model can be applied. For 2D bubble evolution, such a model
has not been developed. In this work we develop a Rayleigh-type model for 2D bubble expansion
that is much faster and simpler than 2D hydrodynamic simulations and can be applied toward the
design and understanding of fiber-based medical therapies. The model is based on a flow potential
representation of the hydrodynamic motion and is described by a Laplace equation with a moving
boundary condition at the bubble surface. In order for the Rayleigh-type 2D model to approximate
bubble evolution in soft tissue, we include viscosity and surface tension in the fluid description. We
show that the 1D Rayleigh equation is a special case of our model. The Laplace equation is solved
for each time step by a finite-element solver using a fast triangular unstructured mesh generator. Our
simulations include features of bubble evolution as seen in experiments and are in good agreement
with 2D hydrodynamic simulations. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1467654#
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I. INTRODUCTION

In many medical therapies, bubbles are generated
short pulses of laser light delivered through an opti
fiber.1–4 Vapor bubbles are widely applied to cutting an
breaking up of tissue by the generation of acoustic wa
and by bubble expansion and collapse. For example, bub
are used in laser-assisted coronary angioplasty for dissol
blood clots, in ophthalmology and dermatology for removi
melanin structures, and in intraocular surgery for photod
rupting tissue.1 Vapor bubble research in 1D and 2D has
long history in a variety of applications, in relation to bubb
expansion and collapse far from boundaries and next to
and rigid boundaries.5–11

A theoretical description of the bubble evolution requir
two-dimensional~2D! hydrodynamic simulations and there
fore sophisticated computational capabilities.2–4 For 1D
spherically symmetric bubble evolution there exists a sim
fied treatment, based on an extended Rayleigh model, w
is represented by an ordinary differential equation that can
easily solved.5,6 For 2D bubble effects such as those crea
by the presence of a cylindrically symmetric fiber optic, su
a treatment does not yet exist.

In this work we develop a 2D Rayleigh-type mod
which can be applied toward several medical applications
order to simulate bubble evolution in soft tissue problem
we have extended the model to include viscosity and sur
tension. Adding viscosity and surface tension also cont
utes to the stability of the numerical procedure. The propo
method is two-to-three orders of magnitude faster and
1761070-6631/2002/14(5)/1768/13/$19.00
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quires an order of magnitude fewer spatial zones than the
compressible hydrodynamic simulations.

Our model is based on introducing a flow potentialf
which is a solution of Laplace’s equation.7 The fluid velocity
outside the bubble isu52¹f. This model is valid through-
out most of the bubble’s expansion and collapse phases s
the fluid outside the bubble is incompressible, and irro
tional to a good approximation.8 A flow potential method
was applied in previous work to treat cavities near and
from boundaries, using finite difference and boundary in
gral methods.9–11 In this work we apply a general dynami
finite-element code which was designed for solving 2D ell
tic partial differential equations over an arbitrary bound
domain with moving boundary conditions. The code pr
vides detailed information throughout the fluid domain.
allows up to fourth-order polynomial approximations ov
the generated mesh. However, we found that second o
was sufficient to obtain accurate and smooth solutions. A
the Rayleigh model, we assume that the inside of the bub
is uniform in pressure and density and we derive a mov
boundary condition forf at the bubble boundary. For th
limiting 1D case, our model reduces to the known 1D Ra
leigh model. For the general case we solve a Laplace’s eq
tion in cylindrical geometry with Dirichlet~specifiedf! and
homogeneous Neumann~specified normal componen
]f/]n50! boundary conditions applied to the movin
bubble boundary. Dirichlet boundary conditions are appl
on the bubble boundary and at infinity, where we setf50.
The homogeneous Neumann boundary conditions are
plied on the fiber boundary and on the axis of symme
8 © 2002 American Institute of Physics
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1769Phys. Fluids, Vol. 14, No. 5, May 2002 2D Rayleigh model for bubble evolution
where the normal flow velocity is zero. For every time st
an unstructured mesh finite-element solver~UMFES! is used
to update the triangulation of the region outside t
bubble.12,13

Application of the model assumes an instantane
deposition of laser energy in an aqueous system at the ti
a fiber. We obtained solutions in agreement with detai
hydrodynamic calculations and consistent with experime
characteristics of the expansion and the collapse of
bubble away from the fiber.3,14

The 2D Rayleigh-type model presented in this wo
which includes viscosity and surface tension, can be app
toward the design and understanding of fiber-based med
therapies in more realistic geometries. The flow poten
method can be extended to include other physical mec
nisms that affect tissue behavior, including strength and f
ure properties. These mechanisms were treated succes
by the 1D Rayleigh model and the results were in agreem
with 1D hydrodynamic simulations.4 We believe that the
same can be done possibly in the 2D Rayleigh case.

The plan of the paper is as follows: In Sec. II we discu
the physical model. The numerical procedure is represe
in Sec. III. Computational results and discussion are give
Sec. IV and concluding remarks in Sec. V.

II. THE PHYSICAL MODEL

We first consider a vapor bubble generated in water b
short-pulse laser depositing energy near a fiber tip. Later,
effects of viscosity and surface tension will be added. Und
standing the subsequent bubble evolution requires cylin
cally symmetric 2D simulations or analysis.3,15 We assume
that the bubble interior is uniform in pressure as in a R
leigh model, and that it evolves adiabatically with entro
S0 . After applying an equation of state~EOS! within the
bubble, any of the quantitiesp ~pressure!, r ~density!, T
~temperature!, or « ~specific energy! together withS0 will
determine the remaining quantities.

A. Vapor bubble generation in water

For the region outside the bubble, the relevant hydro
namic equations are the continuity equation

]r

]t
1¹•~ru!50, ~1!

and the momentum equation

]u

]t
1u•¹u52

¹p

r
, ~2!

wherer, p, u denote the density, pressure, and velocity of
fluid outside the bubble, respectively.

We assume a flow potentialf such thatu52¹f. Con-
sequently, we may integrate Eq.~2! from r to ` and obtain,
independently of the bubble boundary trajectory

2
]f

]t
1

1

2
~¹f!25h~`!2h~r !, ~3!

where
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dh52dp/r, h~`!2h~r !5E
r

` dp

r
, ~4!

where h(r ) is the enthalpy atr , and h(`) is the ambient
enthalpy at larger .

For many cases of interestr'constant, i.e., we may
replaceh(`)2h(r ) in Eq. ~4! by (p(`)2p(r ))/r and get

df

dt
5

p2p`

r
2

u2

2
, ~5!

whered/dt5(]/]t)1u•¹, p is the pressure atr , andp` is
the ambient pressure. Letu parametrize the distance alon
the bubble boundary. Then, by enforcing Eq.~5! at the
bubble boundary, we get

dF~u!

dt
5

P2p`

r
2

U2~u!

2
, ~6!

i.e., a relation between the pressureP, velocity U(u), and
the flow potentialF~u!, along the boundary. Equation~6!
represents the boundary condition for the bubble expans

For incompressible flow, we may substituter
'constant in Eq.~1!, and by usingu52¹f we obtain a
Laplace equation for the region outside the bubble, i.e.,

¹2f50. ~7!

The solution of Eq.~7!, along with the moving boundary
condition, Eq.~6!, represents the main ingredients of our 2
time-dependent bubble model. In the following, we assu
that the boundary pressureP is the pressurepb inside the
bubble at all times.

We can show that Eqs.~6! and~7! are consistent with the
1D Rayleigh equation. For the 1D spherical case the solu
of Eq. ~7! is f5C/r . Using u52]f/]r , we get f
5R2U/r . Insertingf in Eq. ~5! and evaluating on the bubbl
boundary (r 5R), we get

RR̈1
3

2
U25

P2p`

r
, ~8!

which is the 1D Rayleigh equation.6

By assumingr'constant, we have so far ignored th
acoustic emission outside the bubble. However, the acou
emission for a laser depositing its energy close to the fiber
can be easily approximated. The acoustic wave is emitted
a short time scale relative to the bubble expansion. The
tial bubble velocity perpendicular to the fiber tip for a un
form laser deposition is16

us5p0 /~2rcs!, ~9a!

where cs is the adiabatic sound speed in water (cs51.5
•105 cm/s), p0 is the initial bubble pressure, andr is the
density outside the bubble. The acoustic energy emitted f
the bubble equals the work done by the expanding bub
es5*V0

V1 p dV during the emission timet1 .17 The initial

bubble volume isV05L0A, where L0 and A denote the
bubble initial width and its cylindrical cross-sectional, ar
respectively. During the acoustic emission the bubble volu
increases toV15L1A, where L15L01ust1 . Since the
bubble expands adiabatically, we have
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1770 Phys. Fluids, Vol. 14, No. 5, May 2002 Friedman et al.
es5m0~«02«1!, ~9b!

wherem0 is the mass inside the bubble and«0 , «1 are the
respective specific energies before and after the acou
emission process. The acoustic energy is then subtra
from the initial bubble energy to give the available ener
for bubble expansion.

After acoustic emission, there is still a process of co
pressibility, which effectively ends when the acoustic wa
reaches a distance on the order of the fiber width. At the fi
collapse stage of the bubble in the 2D case, there is ano
episode of acoustic emission. However, most of the bub
energy is dissipated by heating of the close surroundings,
the bubble rebound is usually small. This dissipated ene
spreads away from the fiber tip by the induced flow in t
ambient fluid.

B. Vapor bubble generated in viscous fluid

In order to include viscosity and surface tension in t
model, we need to rewrite Eq.~6!. The pressureP at the
bubble boundary, instead of being simply the bubble press
pb , is now combined with the contributions from viscosi
and surface tension.18–20The pressure introduced by the su
face tension is given bypg52g(1/R111/R2), where R1

andR2 are the major radii of curvature of the bubble boun
ary andg is a constant depending on the properties of
surrounding fluid.18 For a bubble boundary which, at a give
time is defined byz5 f (r ), a simple procedure yields21

R15
~11 f 82!3/2

f 9
, R25

rA11 f 82

f 8
. ~10!

These relations hold for an arbitrary body of revolution ge
erated byz5 f (r ). The first radiusR1 , simply represents the
curvature of the planar curvez5 f (r ). For example, if the
body of revolution is generated by a straight line, th
f 9(r )50 and the radius of curvature is infinite. The seco
radius of curvature,R2 , is the result of the rotation of the
curvez5 f (r ).

The pressure added by the presence of viscosity is g
by pm52m(]un /]r n), where]un /]r n , the normal deriva-
tive of the velocity componentun , is evaluated at the bub
ble’s boundary andm is the viscosity of the soft tissue.18–20

The pressure at the bubble boundary is thus taken as

P5pb12m
]un

]r n
2gS 1

R1
1

1

R2
D . ~11!

In the case of the 1D Rayleigh model, we haveu
5UR2/r 2, whereR and U are, respectively, the bubble ra
dius and velocity~on the boundary!. Therefore, (]u/]r )R

522UR2/R3522U/R, which implies the familiar result
Pm524mU/R. SinceR15R25R as well, we obtain from
Eq. ~11! Pg52g/R as expected.

III. THE NUMERICAL PROCEDURE

At the initial time t050, we assume that the bubb
starts as a cylinder with known radius and layer deposit
width L0 at a given room temperature and initial densityr0

inside the bubble. The deposition of energy by a short-pu
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laser increases the bubble temperature toT0 and the two
quantitiesr0 , T0 determine the constant entropyS0 of the
bubble, the initial pressurep0 , and the initial specific energy
«0 . An equation of state~EOS! of water is used, based o
NBS steam tables.22 We useS0 to obtain the adiabat of the
fluid inside the bubble, which provides the pressure a
function of density. A homogeneous adiabatic acoustic em
sion of k% from the initial bubble energy«0 , provides cor-
rected values for the pressure (p1), temperature (T1), den-
sity (r1), and specific energy («1) at an acoustic emission
time t1 . The value ofk can be obtained from Eqs.~9a!, ~9b!,
and the estimatet1>2L0 /cs .

Since the flow potential model does not accurately r
resent the bubble expansion for very short times, we m
determine an initial potential flow timet2.t1.t0 beyond
which our model is valid. This is a characteristic time giv
by t2>4r f /cs , in which the acoustic wave samples a com
plete cycle of the fiber cross section. The initial data for t
potential flow model att2 can be first obtained by applying
2D hydrodynamic code to the early time evolution of t
bubble. Such a simulation includes the geometry of the fib
the velocity profile along the bubble boundary, and the pr
sure (p2), temperature (T2), density (r2), and specific en-
ergy («2). ~Note that any one of these thermodynamic qua
tities together withS0 determines the others as well.3! In Sec.
IV B we will show that the conditions att2 can be deter-
mined by physical considerations independent of the 2D
drodynamic simulation. This enables us to obtain a solut
that is not tied in any way to the hydrodynamic simulation

In the calculations, we use the unstructured mesh fin
element solver~UMFES!, which is a general finite-elemen
solver for 2D elliptic partial differential equations~e.g.,
Laplace’s equation! over an arbitrary bounded domain, wit
Dirichlet ~specified f!, homogeneous Neumann (]f/]n
50) or mixed@(]f/]n)1sf5h#, with s andh specified
on the boundary! boundary conditions.12,13The density func-
tion of the generated mesh~i.e., of the mesh triangular ele
ments! is supplied by the user.

The validity of the initial geometry and the initial veloc
ity profile at timet2 at the bubble boundary can be verifie
using an energy conservation principle. Indeed, by solv
Laplace’s equation outside the bubble at timet2 , we obtain
the potential and velocity of every fluid element and con
quently the total kinetic energyek of the ambient fluid. Since
the energy dissipated duringt1,t,t2 is small, we have

~«12«2!m0>ek , ~12!

where m0 is the mass inside the bubble andm0«15m0«0

2es , with es being the acoustic energy emitted by Eqs.~9a!
and ~9b!.

The numerical procedure is as follows.
Initial step: Solve Laplace’s equation in cylindrical geomet
outside the bubble, using the initial velocity profile on th
bubble boundary, from the results of a 2D hydrodynam
code at timet2 or from independent analysis~see Sec. IV C!.
The initial pressure, temperature, and density inside
bubble are the previously definedp2 , T2 , r2 . These quanti-
ties are derived from the bubble’s dimensions at timet2 as-
suming constant entropyS0 . At ‘‘infinity,’’ i.e., at boundary
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1771Phys. Fluids, Vol. 14, No. 5, May 2002 2D Rayleigh model for bubble evolution
points far from the fiber tip and the bubble boundary,
assume homogeneous Dirichlet boundary conditions, i.ef
50. Along the surface of the fiber and the problem axis
symmetry, we take a zero normal fluid velocity, i.e.,]f/]n
50. At the bubble boundary we update the flow poten
after each time step. We thus obtain the flow potential dis
bution f2 outside the bubble boundary. On the bubb
boundary we denote the flow potential byF2 and the pres-
sure there is simplyP25p2 .

At the nth time step (n>3) we perform the following.
Step 1:Use Eq.~6! to update the flow potentials

Fn5Fn211Dtn21F1

r
~Pn212p`!2

Un21
2

2 G , ~13!

wherePn21 is the bubble effective pressure on the bound
as presented by Eq.~11!, r the outside fluid density, and
Fn21 , Un21 are the flow potential and velocity at the bubb
boundary during the (n21!th time step, respectively.

FIG. 1. The initial bubble in cylindrical coordinatesr,z obtained from 2D
hydrodynamic code after 300 ns.

FIG. 2. The bubble horizontal velocity profile calculated by the 2D hyd
dynamic code. The potential flow model is valid approximately after 300
when this velocity reaches an asymptotic value of approximately 4000 c
Downloaded 02 Feb 2003 to 192.58.150.40. Redistribution subject to A
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FIG. 3. Triangulation outside the bubble in cylindrical coordinatesr,z, at t
5300 ns.

FIG. 4. Defining the bubble’s three lengths:r R , r N , r L .

FIG. 5. The bubble’s lengths vs time for ambient pressurep`510 bar: our
model ~solid lines! compared with 2D hydrodynamic calculations~discrete
points:o, 1,* denoter R , r N , r L , respectively!. Initial conditions inside the
bubble taken att5300 ns are:p2540 bar, T25249 °C, r250.33 g/cm3;
the initial horizontal and normal velocities of the bubble front and upp
edge are 4000 cm/s and 0, respectively.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Bubble expansion and col
lapse in cylindrical coordinatesr, z at
various times forp`510 bar; the ini-
tial conditions are those of Fig. 1.
ie
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ter

nd

ith
Step 2:Solve Laplace equation forfn outside the region
using UMFES; then update the velocitiesUn at the bubble
boundary using

Un52¹fn , ~14!

where¹fn is calculated numerically fromfn . Sincef is
approximated linearly over each mesh triangle,¹fn is con-
stant over each element.

Step 3:Update the bubble boundary using the velocit
obtained in step 2 and the time intervalDtn .

Step 4:Update the bubble densityrn by calculating the
bubble volumeVn and applying mass conservation

rnVn5r0V0 . ~15!
Downloaded 02 Feb 2003 to 192.58.150.40. Redistribution subject to A
s

The adiabat ofS0 is used to calculate the new bubble pre
surepn . For the next step we usern , pn , Un in Eq. ~13! to
calculateFn11 .

IV. RESULTS AND DISCUSSION

Throughout this work we have assumed a fiber of ou
radiusr f5115mm, including 15mm of cladding and a 100
mm laser core in which the laser beam propagates~see Fig.
1!. The upper right-hand corner of the fiber is curved a
simulated by a quarter circle of radius 15mm. We consider a
homogeneous laser absorption length of 7mm and assume
the bubble to be initially at room temperature of 17 °C w
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



-

1773Phys. Fluids, Vol. 14, No. 5, May 2002 2D Rayleigh model for bubble evolution
FIG. 7. Bubble expansion and col
lapse in cylindrical coordinatesr, z at
various times forp`51 bar. The ini-
tial conditions are those of Fig. 1.
s
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an initial density ofr050.9989 g/cm3. During the energy
deposition by the laser, the bubble temperature increase
350 °C. Using the NBS steam tables,22 we obtain the bub-
ble’s entropyS052.8973107 erg/g, which remains constan
throughout the whole process. The initial pressure isp0

56008 bar and the initial specific energy is«051.197
31010erg/g. By using Eqs.~9a! and ~9b!, we can derive an
adiabatic acoustic emission of about 5% which lasts ab
t159 ns and reduces the bubble energy to a lower value
«151.13631010erg/g. Consequently, using the NBS stea
tables and the adiabatic nature of the process, we find tha
initial temperature, density, and pressure becomeT1
Downloaded 02 Feb 2003 to 192.58.150.40. Redistribution subject to A
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5262 °C, r150.78 g/cm3, p1574 bar, respectively. The
drop in density causes the bubble width to increase from
8.8 mm.

Since the flow potential model is not valid at the ve
early stage of the bubble expansion, we first use a 2D hyd
dynamic code to obtain the bubble geometry and the bub
boundary velocity aftert25300 ns. At this time the bubble
two-dimensional projection~approximately! maintains a
rectangular shape with length 115mm and width 15mm and
expands to the upper edge of the fiber’s curved corner~Fig.
1!. The z component of velocity of the bubble as obtain
from the 2D hydrodynamic code is illustrated in Fig. 2.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. The bubble’s lengths vs time for ambient pressurep`51 bar and initial temperaturesT05200 °C, 250 °C, 300 °C.
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varies very slowly in the time interval 0.3ms,t,1 ms and
reaches an asymptotic value of 4000 cm/s. This asympt
velocity is also approximately the value calculated by a
hydrodynamic code for the normal velocity at the topr
5r f) of the initial bubble. The normal velocity, howeve
which pertains to the bubble’s short dimension, is less
evant to the overall expansion of the bubble. Varying
value of this velocity between zero and 4000 cm/s turns
to have little effect on the global solution. The initial cond
tions obtained for this geometry after 300 ns areT2

5249 °C, r250.33 g/cm3, p2540 bar, and «251.127
31010erg/g. A typical triangulation for a free boundar
problem where the density function of the elements depe
inversely on the distance from the fiber’s tip, is shown
Fig. 3.

As illustrated in Fig. 4, for a typical time step, thre
characteristic lengths of the bubble are defined:r R denotes
the distance between the right front midpoint of the bub
and its left rear,r N is the distance between the highest po
of the bubble boundary and the bottom of the cladding, a
r L is the distance between the bubble’s leftmost point on
cladding and the left edge of the fiber’s curved corner. At
beginning, i.e., for t5300 ns, we haver R515mm, r N

515mm, r L50 mm.

A. Numerical results for water

We considered two cases of ambient pressuresp`51, 10
bar for an aqueous system.
Downloaded 02 Feb 2003 to 192.58.150.40. Redistribution subject to A
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1. Case 1: p `Ä10 bar

Since the detailed hydrodynamic calculation is very tim
consuming, it is more convenient to provide a comparis
for a shorter time scale evolution in the casep`510 bar
rather than in the casep`51 bar.

We have utilized theLATIS ~Laser TISsue! program2 to
provide initial conditions for the 2D Rayleigh model and
compare with the results at later times.LATIS is a general-
purpose program for modeling laser–tissue interactions
addition to other processes important in laser–tissue inte
tion, LATIS solves the time-dependent compressible flu
equations in 2D cylindrical symmetry using a Lagrangi
finite difference numerical method.2 LATIS, which uses the
same equation of state as the 2D Rayleigh model, has b
previously verified against experimental data.3

In Fig. 5 we compare the bubble’s three radii comput
by our flow potential model with those obtained usingLATIS.
The initial normal velocity is zero, a value that provided t
best agreement with the 2D hydrodynamic computatio
However, as previously stated, little change has been
served for an initial normal velocity of 4000 cm/s. Th
choice of the initial velocity profile was consistent with th
energy conservation principle@Eq. ~12!#. In the case illus-
trated in Fig. 5 we get («12«2)m0520 erg, which is in
agreement with the simulated fluid kinetic energyek

522 erg, calculated from the flow potential by integratin
u¹fu2 outside the bubble att5300 ns.

The maximum values ofr L , r N , r R are 91, 123, and 184
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 9. Bubble expansion and col
lapse in cylindrical coordinates for
p`51 bar, viscosity coefficient m
51.35 poise, and surface tension coe
ficient g554 erg/cm2.
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mm and are obtained at times of 5.8, 6.1, and 9.1ms, respec-
tively. The results forr R were in very good agreement wit
those obtained by the hydrodynamic code. Good agreem
was also received forr L and r N except at about the maxi
mum expansion point, where deviation up to 15% from
detailed hydrodynamic computations was observed. The
bal expansion collapse process of the bubble is shown in
6. Towards the end of the collapse phase, the bubble
lapses away from the fiber as observed in experimen
well.14

2. Case 2: p `Ä1 bar

The physical conditions that exist in practical problem
usually suggest an ambient pressure of aboutp`51 bar. We
Downloaded 02 Feb 2003 to 192.58.150.40. Redistribution subject to A
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therefore applied our method to this case as well, a case
which the detailed 2D hydrodynamic calculation is prohib
tively time consuming. The initial conditions at the sho
time of 300 ns can be chosen to be the same as in case 1
maximum values of the radiir L , r N , r R are obtained 398,
435, and 551mm and are attained at 45, 42, and 49ms,
respectively. The global expansion collapse process is sh
in Fig. 7. At the beginning of the process the pressure ins
the bubble is dominant and there is hardly any differen
between the two cases. Later, the lower ambient pres
becomes significant, and this causes a sizable increase i
time of expansion and collapse and of the bubble’s dim
sions, compared to the 10 bar case.

During the ellipsoidal-shaped collapse, as seen for
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 10. Bubble expansion and col
lapse in cylindrical coordinates for
p`51 bar, viscosity coefficient m
52.7 poise, and surface tension coe
ficient g554 erg/cm2.
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ample in the last frame of Fig. 7, the liquid forms a j
directed away from the fiber.23 Jet formation and bubble col
lapse near a rigid material or elastic boundary such as
logical tissue may cause material erosion and collat
damage.23 Mechanisms such as jet penetration and jet-l
ejection of boundary material, elastic rebound of the bou
ary, and tensile stresses from the collapsing bubble, ca
enhanced ablation of the surrounding material and dama

We also studied the sensitivity of the bubble dynamics
the initial temperature. This is presented in Fig. 8, wh
results forT05200 °C, 250 °C, and 300 °C show significa
increase of the bubble’s dimensions with temperature.
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B. Numerical results for viscous fluid

In the following cases we tookp`51 bar and assumed
various nonzero viscosity and surface tension coefficie
which are typical of gelatin-type soft tissues. As basel
values, we tookm51.35 poise andg554 erg/cm2.24 The
global expansion and collapse process is given in Fig. 9.
maximum bubble size is somewhat smaller than in Fig.
where viscosity and surface tension are not included. T
main difference between the two cases is that in the prese
of viscosity the bubble collapses later in time and its deta
ment from the fiber occurs further away. A case with i
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 11. Sensitivity to viscosity coef-
ficient bubble’s lengths vs time for
p`51 bar, m50, 1.35, 2.7 poise, and
g554 erg/cm2.
,
ti

y
re
rly

d-

t
bl
u

t
in
e

ni
a

th
he
o
n

m
tu

.
lus-
the

the
ion
ailed
n-

r
tial

s a

y-
al

n-
l

l
.

ent
gh
di-
s
ed
creased viscosity,m52.7 poise, is shown in Fig. 10. Here
the collapse is further delayed but ends before separa
occurs and the bubble is again expanding. The sensitivit
the bubble’s dimensions to the viscosity coefficient is p
sented in Fig. 11. A soft tissue with larger viscosity clea
reduces the bubble’s dimensions.

The velocity profile, which is very helpful in understan
ing the collapse process, is given forp`51 bar, m
51.35 poise, andg554 erg/cm2 in Fig. 12. During the col-
lapse, we observe a large velocity field generated near
fiber tip and aimed away from the fiber towards the bub
center. A jet is formed towards the right and pushes the liq
away from the fiber.

C. Disengagement from the hydrodynamic code

The potential flow model, which is valid throughou
most of the bubble expansion collapse process, is determ
by the initial velocity of the bubble boundary and by th
initial bubble geometry. It is possible to approximate the i
tial frontal velocity using physical considerations such as
energy conservation principle as given in Eq.~12!, where the
normal velocity is taken as zero. Exact knowledge of
bubble’s initial dimensions is of less significance. In fact, t
global expansion and collapse processes for different ge
etries are very similar, provided that the initial bubble dime
sions are similar. In the case ofp`510 bar we calculated the
process over a period of 12ms for bubble initial widths of
10, 15, and 20mm, as presented in Fig. 13. For each proble
we calculated the bubble density, pressure, and tempera
Downloaded 02 Feb 2003 to 192.58.150.40. Redistribution subject to A
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assuming an adiabatic process, and using Eq.~12! obtained a
similar initial frontal velocity of approximately 4000 cm/s
The associated bubble lengths as functions of time are il
trated in Fig. 13, which demonstrates the insensitivity of
process to the initial geometry.

Since in most applications one is mainly interested in
approximate bubble geometry during the global expans
process, our procedure can be disengaged from the det
2D hydrodynamic code. It is sufficient to start with a reaso
able initial bubble width and a frontal initial velocity fo
which Eq.~12! holds. For example, let us assume a poten
flow model aftert25300 ns. This value fort2 can be ob-
tained as the time in which the acoustic wave sample
complete cycle of the fiber cross section, for examplet2

>4r f /cs>300 ns. It can also be verified by the hydrod
namic code~Fig. 2! as the time where the bubble horizont
velocity enters the asymptotic zone of aboutu2

54000 cm/s. By virtue of Eq.~12! and the relationL25L0

1u2t2 for the bubble width, we get a self-consistent horizo
tal initial velocity of about 4000 cm/s. Since the initia
bubble width att050 is L057 mm, the bubble width att2

5300 ns isL2519mm. This value falls inside the interva
10mm<L2<20mm, which we tested and illustrated in Fig
13.

There is a fundamental difference between the curr
2D flow potential model and the 1D spherical Raylei
model, necessitating the implementation of the initial con
tions at a later time (t2) in the 2D case. In the example
explored in this paper, the heated region of fluid is shap
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 12. Velocity profiles throughout
bubble expansion and collapse forp`

51 bar, m51.35 poise, and g
554 erg/cm2.
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like a very thin pancake whose thickness is much sma
than its radius. Therefore, the dynamics begins to evo
much like a 1D heated slab. However, there is no bub
formation for a 1D slab in the incompressible fluid appro
mation, since the velocity is constant with distance from
source. It is only after sound waves have traveled to the o
radius of the heated pancake that a radial flow can be
from which a bubble is formed. Thus, the 2D case require
long time to set up the flow needed to form a bubble. T
case is much simpler in 1D spherical geometry, where
bubble begins to form as soon as the sound waves cros
thickness of the heated regions, thereby circumventing
need for at2 time scale introduced earlier. The divergence
Downloaded 02 Feb 2003 to 192.58.150.40. Redistribution subject to A
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the flow and the associated 1/r 2 velocity field allow this early
bubble formation.

V. SUMMARY

A potential flow method was applied to obtain a 2
Rayleigh-type model for bubble expansion and collapse. T
model includes viscosity and surface tension terms and
thus realistically treat bubble evolution within a real so
tissue. The main assumption was that the inside of the bu
is homogeneous in pressure and density, as is usually
sumed in a Rayleigh model. The procedure derives the in
conditions for the potential flow model at timet2 either from
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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physical considerations such as energy conservation, or f
a detailed 2D hydrodynamic simulation run during a sh
time scalet2 . These conditions include the initial geomet
and velocity profile at the bubble boundary, which can
validated using an energy conservation principle. The
merical scheme consists of solving Laplace’s equation
the flow potential outside the bubble, subject to a mov
boundary condition on the bubble boundary. The 1D R
leigh bubble expansion is a special case of our 2D model.
used a general high-order finite-element solver for 2D el
tic problems, which provided our model with the flexibilit
to treat various tissue boundary conditions and geometri

The 2D Rayleigh type model presented in this wo
which is faster and simpler than a 2D compressible hyd
dynamic simulation, can be applied to the design and un
standing of fiber-based medical therapies. It can also be
tended to include other physical mechanisms that can a
tissue behavior such as strength and failure properties.
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