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[1] We introduce a computational model for high-resolution simulations of particle-laden
gravity currents. The features of the computational model are described in detail, and
validation data are discussed. Physical results are presented that focus on the influence of
particle entrainment from the underlying bed. As turbulent motions detach particles
from the bottom surface, resuspended particles entrained over the entire length of the
current are transferred to the current’s head, causing it to become denser and potentially
accelerating the front of the current. The conditions under which turbidity currents
may become self-sustaining through particle entrainment are investigated as a function of
slope angle, current and particle size, and particle concentration. The effect of
computational domain size and initial aspect ratio of the current on the evolution of the
current are also considered. Applications to flows traveling over a surface of varying
slope angle, such as turbidity currents spreading down the continental slope, are modeled
via a spatially varying gravity vector. Particular attention is given to the resulting
particle deposits and erosion patterns.
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resuspending gravity currents: Conditions for self-sustainment, J. Geophys. Res., 110, C12022, doi:10.1029/2005JC002927.

1. Introduction

[2] Gravity currents are flows generated when a predom-
inantly horizontal density gradient is present in a fluid and
hydrostatic pressure differences cause the heavy fluid to
spread underneath the light fluid. In geophysical contexts,
the density difference between the current and the ambient
fluid is often due to the presence of suspended particles
which act as the current’s driving force. Such particles also
settle relative to the fluid and may deposit at the bottom
edge of the current. In particular, the dynamics of particle-
laden gravity currents are relevant to ash-laden volcanic
flows [Sparks et al., 1991], crystal laden flows in magma
chambers [Hodson, 1998] and turbidity currents, i.e.,
underwater currents in which the excess density is provided
by suspended sediment [Simpson, 1997].

[3] Erosion by turbidity currents is largely responsible for
the creation of submarine canyons on continental slopes
[e.g., Pratson and Coakley, 1996]. Turbidity currents are the
most significant agents of sediment transport into the deep
sea, creating accumulations that include the Earth’s largest
sediment bodies [Normark et al., 1993]. They also consti-
tute a hazard to marine engineering installations such as oil
platforms, pipelines and submarine cables [Krause et al.,
1970]. Natural turbidity currents occur infrequently and
unpredictably in remote and hostile environments, and tend
to be destructive of submarine monitoring equipment [e.g.,
Zeng et al., 1991]. Consequently they are observed only
rarely and generally by indirect means only [Hay et
al., 1982; Hughes-Clarke et al., 1990]. Laboratory
and numerical experiments thus constitute essential
means of investigating these important large scale natural
phenomena.
[4] Particle-laden gravity currents have been studied

intensively in the past four decades. Turbidity currents are
nonconservative in that they entrain ambient fluid through
turbulent mixing, and deposit sediment as turbulent motions
decay. They may also erode sediment from the bed, thus
producing self-sustaining (‘‘autosuspending’’ or ‘‘ignitive’’)
currents [Parker et al., 1986; Pantin, 1991, 2001]. Simpli-
fied analytical models have been suggested to describe
density currents [Huppert and Simpson, 1980] and the
asymptotic limit of small particle concentration was con-
sidered by using density-driven gravity currents as a known
background flow [Hogg et al., 2000]. Experimental studies
of the progression of particle-laden currents with finite
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volume [Bonnecaze et al., 1993] or constant flux [Garcı́a
and Parker, 1993] were performed, and particular attention
was given to the resulting deposits. Layer-averaged numer-
ical models have been suggested by Bonnecaze et al. [1993]
and Garcı́a and Parker [1993]. Such simplified models
require a number of closure assumptions regarding bottom
friction, bottom shear stress, fluid entrainment and front
velocity. More recently, highly resolved two-dimensional
(2-D) and three-dimensional (3-D) simulations computing
fluid flow from first principles have successfully described
particle-laden gravity currents [Necker et al., 2002]. Several
features of the flow, such as energy and particle concentra-
tion distribution may easily be computed from these simu-
lations and significantly fewer closure assumptions are
required in such models. For those reasons, a similar
approach is used in the present study to model resuspending
gravity currents.
[5] The geometry of the surface over which currents

propagate determines their long term behavior. For density
currents, experimental studies of the influence of the slope
angle were performed by Britter and Linden [1980] and
Beghin et al. [1981]. Particle-laden currents traveling down
a broken slope were investigated by Garcı́a [1993] owing to
their relevance to turbidity currents spreading down the
continental shelf before reaching a relatively flat ocean
bottom. Complex geometries were recently included in
highly resolved simulations via the inclusion of a spatially
varying gravity vector in a rectangular computational do-
main [Blanchette et al., 2005]. If a current is spreading over
an erodible bed, the geometry of the base may allow the
current to resuspend sufficient particles so that its mass and
velocity increase as it progresses down slope. This phe-
nomenon is responsible for the destructive power of ava-
lanches [Hutter, 1996]. Self-sustaining turbidity currents are
known to occur in the oceans where they may travel over
hundreds of kilometers, as exemplified by the Grand Banks
turbidity current of 1929 [Heezen and Ewing, 1952].
[6] The flux of resuspended particles as a function of

flow and particle parameters is particularly difficult to
estimate. Several empirical models have been suggested
[Smith and McLean, 1977; Garcı́a and Parker, 1991, 1993],
but their applicability remains limited and they must be used
with caution. Direct numerical simulations have been
employed to study the lift-off of particles in plane Poiseuille
flow [Choi and Joseph, 2001], but such simulations are so
far limited to a fairly small number of particles arranged in
regular patterns [Patankar et al., 2001]. At present, it is fair
to say that a complete understanding of resuspension from
an irregular bed of particles has not yet been achieved.
However, because re-entrainment of particles is critical in
the long-term behavior of gravity currents, it must be taken
into account despite the limitations inherent in empirical
models derived from experimental measurements.
[7] Our current study focuses on extending our earlier

high-resolution simulations of nonresuspending turbidity
currents [Necker et al., 2002] to situations where resuspen-
sion is significant in order to investigate the depositional
and erosional properties of such currents. Particular
attention will be given to the conditions required for a
particle-laden current to exhibit a snow ball effect. Specif-
ically, we ask under which conditions a current becomes
self-sustaining depending on parameters such as particle

size and concentration, current height and slope angle. Our
model and numerical approach are presented in section 2.
We describe our results in section 3, and the implications of
our findings are discussed in section 4.

2. Model Description

2.1. Governing Equations and Relevant Parameters

[8] We consider currents in which the particle concentra-
tion is relatively low, so that particle-particle interactions
may be neglected. The density difference between the
current and the ambient is thus typically small and we
may use the Boussinesq approximation [e.g., Spiegel and
Veronis, 1960], where density variations appear only in the
buoyancy term. We use a continuum approach, where the
density of the suspension, �r, is related to the particle
concentration by volume, �C, through �r = �rf + �C(�rp � �rf),
where �rf and �rp are the fluid and particle density, respec-
tively, and the bars indicate dimensional (and nonnormal-
ized) quantities. Particles are assumed to be transported by
the fluid and to settle relative to the fluid with velocity �us in
the direction of gravity.
[9] The work by Necker et al. [2002] comparing 2-D

and 3-D simulations of gravity currents showed that, even
though vortices tend to be more vigorous in 2-D simulations
than in full 3-D simulations, 2-D and 3-D simulations yield
very similar results regarding the front propagation velocity
and the spanwise averaged deposit profile. For this reason,
we restrict our attention to 2-D systems. We eliminate
pressure terms by considering a stream function-vorticity
description of the fluid motion. Denoting the coordinate
parallel to the bottom surface by x1, that perpendicular by x2
and the corresponding velocities by u1 and u2 respectively
(see Figure 1), we introduce a stream function y satisfying
u1 = @y/@x2 and u2 = �@y/@x1 and a vorticity function w =
@u2/@x1 � @u1/@x2.
[10] We use the initial half-height of the suspension

reservoir, �h, as a length scale, and the initial particle
concentration, �C0, as a concentration scale. As a typical
velocity, we consider the buoyancy velocity

�ub ¼ g�h�C0R
� �1=2

; ð1Þ

where g is the gravitational acceleration and R = (�rp � �rf)/�rf.
We thus obtain the following nondimensional governing
equations [Necker et al., 2002]

r2y ¼ �w ð2Þ

Dw
Dt

¼ r2w
Re

� @ C cos qð Þ
@x1

� @ C sin qð Þ
@x2

ð3Þ

DC

Dt
þ Us

@ C sin qð Þ
@x1

� @ C cos qð Þ
@x2

� �
¼ r2C

Pe
ð4Þ

where we use the notation D/Dt = @/@t + u1@/@x1 + u2 @/@x2
and where Us = �Us/�ub, Re = �ub �h/�v is the Reynolds
number and Pe = �ub�h/�k the Péclet number, with �v the fluid
viscosity and �k the particle diffusion constant. Note that the
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only driving force of the flow comes from horizontal
variations of C, i.e., variations along the x axis.
[11] It should be pointed out that, in principle, one can

account for the force exerted by the particles onto the fluid
in two different ways. In the first approach one considers the
conservation equations for the suspension, i.e., the com-
bined fluid/particle system. In this case, only external forces
acting on the suspension should be considered, such as the
action of the buoyancy force on the density field of the
suspension. Internal forces acting within the suspension,
such as the drag force between fluid and particles, are not
considered separately in this case. This approach was taken
by Necker et al. [2002], and is also pursued here. Alterna-
tively, one may consider the fluid and the particles sepa-
rately. In this case, the conservation equation for the
constant density fluid contains a term that accounts for the
drag force exerted by the particles on the fluid, but a
separate buoyancy force does not appear in the equation.
In that sense the drag force and the buoyancy force are
equivalent to each other. This second approach was taken,
for example, by Bosse et al. [2005].
[12] Our simulations aim at reproducing as closely as

possible the physical conditions prevailing in large turbidity
currents. We therefore elected to simulate currents in
which water is the suspending fluid, i.e., �rf = 1g/cm3 and
�v = 10�6 m2/s. We consider particles of density �rp = 2.5g/cm3

(R = 1.5) and typical diameter �d = 100 mm, values appro-
priate for sandy turbidity currents such as those forming
many submarine fans [Normark et al., 1993]. To compute
the particle settling speed we employ the empirical formula
of Dietrich [1982], �Us = (WgR �v)1/3, where

W ¼ 1:71� 10�4 gR�d3

�n2

� �2

; if l < �1:3

¼ 10p lð Þ; otherwise;

with l = log10(gR �d3/�v2) and p(l) = (�3.76715 +
1.92944l � 0.09815l2 �0.0057l3 + 0.00056l4).
To compute the buoyancy velocity, we use a typical
particle concentration of �C0 = 0.5% and height of

approximately �h = 1.6 m, which results in a nondimen-
sional particle settling speed of Us = 0.02.
[13] The above parameters correspond to a current Rey-

nolds number of order 106, which is well beyond the current
reach of direct numerical simulations. As Re increases,
smaller length scales must be resolved, which in turn
implies shorter time steps. However, as will be seen below
in sections 3.1 and 3.2, provided Re > O(1,000), variations
in Re only have a small effect on the overall features of the
flow, [cf. Parsons and Garcı́a, 1998]. For this reason, most
of the simulations to be discussed below will be carried out
with a reduced Reynolds number ReT � Re which is kept in
the range 1,000 < ReT < 10,000. This reduced Reynolds
number can be interpreted as a simple way to model the
effects of small-scale, unresolved flow structures. Our focus
in the current investigation is on small particles with
negligible inertia, whose velocity is given by the fluid
velocity and a superimposed settling velocity. Hence it is
reasonable to assume that the small-scale, unresolved flow
structures will affect the transport of particles in the same
way as the transport of fluid [Shraiman and Siggia, 2000],
so that we set the value of the reduced Péclet number PeT
equal to that of the reduced Reynolds number. Note that all
other dimensionless parameters are kept at their original
values for the typical turbidity current described above. We
wish to remark that, while turbulence models have been
developed for variable density [Speziale, 1991; Choi and
Garcı́a, 2002] and particle-laden flows [Elghobashi
and Abouarab, 1983; Hagatun and Eidsvik, 1986; Zhang
and Reese, 2001; Hsu et al., 2003, and others], to the best of
our knowledge there are no models that can accurately
capture the complex physics in the nondilute layer next to a
resuspending particle bed.
[14] We use a lock-release model, where heavy fluid is

initially confined to a small region, 0	 x1	 xf and 0	 x2	 2.
The initial length of the current, xf, may be varied but was
usually kept at xf = 2. For reasons of numerical stability, the
initial concentration profile was smoothed over a few grid
points (typically 6) using an error function centered at x1 = xf
in the horizontal and at x2 = 2 in the vertical. The fluid is
initially at rest, y = w = 0 and starts moving at t = 0.
[15] In order to model complex geometries, we use a

spatially varying gravity vector [Blanchette et al., 2005]. A
curvilinear coordinate system is thus simulated but second-
order curvature terms are neglected. The resulting approx-
imation is expected to be valid if the ratio of the height of
the flow to the radius of curvature of the bottom surface is
everywhere small. We restrict our study to smoothly varying
bottom surfaces to ensure that the neglected curvature
effects remain small. We use a rectangular computational
domain and enforce a no-slip, no normal flow condition at
the top and bottom boundaries, y = @y/@x2 = 0, and a slip,
no normal flow condition at the left and right walls, y =
@2y/@x1

2 = 0. The latter conditions allow for the use of fast
Fourier transforms in the x1 direction which provide high
accuracy to our numerical scheme.
[16] The particle concentration flux at the boundaries, F, is

set to zero at the top and left walls. At the right wall, which
effectively is never reached by the heavy current, particles
may deposit, but no resuspension is allowed so that F =
�CUs sin q. However, particles are allowed to deposit and
reenter suspension at the bottom boundary: F = (�CUs cos q

Figure 1. Schematic of the coordinate system used in our
simulations. The angle q between the x1 axis and the
horizontal axis is allowed to vary with x1 to model varying
slopes. The dark region corresponds to the initial position of
the heavy fluid and is constrained by 0 	 x1 	 xf, 0 	 x2 	
2. The height and length of the computational domain are H
and L, respectively.
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+ EsUs), where Es is a measure of the resuspension flux as
discussed below. Thus at the top and left boundaries the
diffusive flux is equal to the settling flux, it is zero at
the right wall and it is equal to the resuspension flux at the
bottom surface:

CUs cos qþ
1

PeT

@C

@x2
¼ 0 at x2 ¼ H; ð5Þ

�CUs sin qþ
1

PeT

@C

@x1
¼ 0 at x1 ¼ 0; ð6Þ

@C

@x1
¼ 0 at x1 ¼ L; ð7Þ

@C

@x2
¼ �PeTUsEs at x2 ¼ 0: ð8Þ

[17] Unresolved turbulent motions are assumed to be
responsible for resuspending particles near the bottom
boundary. The influx of particles due to resuspension is
therefore modeled as a turbulent diffusive flux, as small
scale turbulent motions bring deposited particles into the
suspension. As compared to the frequently employed strat-
egy of distributing the added particles equally over the
entire height of the current, this diffusive flux approach
represents a more realistic approximation of the physically
complex resuspension process. The height of the deposit,
d(x1, t), may be found by integrating the particle flux over
time

d x1; tð Þ ¼
�C0

s

Z t

0

CUs cos qjx2¼0 � EsUs

� �
dt;

where s is the particle volume fraction in the bed, taken to
be a constant s = 0.63 [Torquato et al., 2000]. Note that the
corresponding porosity of the deposit is 1 � s = 0.37. Note
that we consider only flows where �C0 � 1% so that the
erosion or deposition depth is small relative to the current
size (d � H), which allows us to keep the position of the
bottom boundary fixed in our computations.
[18] To evaluate the resuspension flux, Es Us, we use the

empirical formula derived by Garcı́a and Parker [1993] for
turbidity current experiments, which relates the resuspen-
sion flux to the particle Reynolds number and bottom shear
velocity. We consider an erodible bed composed of particles
identical to those in suspension. A measure of the vigor of
the resuspension is given by Z, which, following Garcı́a
and Parker [1993], is defined as

Z ¼ u*

Us

Re0:6p if Rep > 2:36;

Z ¼ 0:586
u*

Us

Re1:23p if Rep 	 2:36

where u* is the shear velocity at the bottom wall and Rep is
the particle Reynolds number

u* ¼ 1

ReT

@u

@x2

����
x2¼0

 !1=2

; Rep ¼
�d g�dR
� �1=2

�n
: ð9Þ

The lower and upper branches of Z reflect the different
settling dynamics of low and high particle Reynolds
numbers, respectively. The resuspension flux, EsUs, is then
a threshold function of Z,

Es ¼
1
�C0

aZ5

1þ a
0:3 Z

5
; ð10Þ

with a = 1.3 � 10�7. Notice that the normalization of Es by
the initial particle concentration renders the effect of
resuspension more significant for dilute suspensions. Also,
Es may not exceed 0.3/�C0, thus providing a saturation
mechanism.
[19] Modeling resuspension as a turbulent diffusive flux

has the inconvenience of injecting energy into the current
through particle diffusion: particles are lifted upward by
diffusive effects without a corresponding energy loss. For
small inclination angles and particle settling speed, (q 	 2
,
Us 	 0.005), this diffusive energy input may significantly
affect the dynamics of the flow. For flat surfaces and small
particle settling speeds, a more detailed description of the
turbulence, such as that provided by a K � � model
[Speziale, 1991], may help to account for this energy input
by decreasing the turbulent kinetic energy and shall be
investigated in the future. However, for larger slope angles,
the potential energy lost or gained by the current through the
deposition or resuspension of particles located higher than
the downstream bottom boundary is much larger than that
gained through particle diffusion. The dynamics of the flow
are therefore dominated by the potential energy of deposited
or resuspended particles and our model is expected to
adequately describe currents evolving over sufficiently large
slopes. Similarly, for large settling speeds, the energy lost
through particle settling is dominant and our approach is
expected to correctly capture the main features of the flow.

2.2. Numerical Approach

[20] The numerical integration of equations (2)–(4) is
performed in a manner similar to that of Härtel et al. [2000].
We perform a Fourier transform for y in the x1 direction and
use sixth-order compact finite differences for other deriva-
tives, except near the boundaries where the derivatives are
accurate to third order [Lele, 1992]. A third-order Runge-
Kutta integrator is used to march equations (3)–(4) forward
in time [Härtel et al., 2000]. The velocity field is obtained
by differentiating y. We use an adaptive time step to satisfy
the Courant-Friedrichs-Levy and diffusive stability criteria
while minimizing computation time. We solve the govern-
ing equations over a rectangular domain described by 0 	
x1 	 L, 0 	 x2 	 H, with typical values L = 24 and H = 4
and a grid of size 1025 � 385, which has been shown to be
a sufficient resolution [Blanchette et al., 2005]. The flow is
found to be unaffected by the choice of L as long as the tip
of the current remains more than one nondimensional unit
away from the right wall. We investigate the influence of H
in the following section.
[21] Large concentration derivatives near the bottom

boundary may result from the modeling of resuspension
as a diffusive flux. A finer grid is thus required near the bed
than in other areas of the computational domain. To
accelerate computations, we have implemented an unevenly
spaced grid in the x2 direction. By considering a Taylor
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series expansion, we generalized the compact finite differ-
ences formulas presented in the work of Lele [1992] to
allow for the use of a varying Dx2. An example of the
resulting formula used to compute a first derivative is
shown in Appendix A. The obtained formulas are sixth-
order accurate and their local error scales as the sixth power
of the local Dx2. To determine the position of the grid
points, x2

j, we evenly space grid points on a stretching
variable 0 	 s j 	 1 and use a mapping function of the form
[Fletcher, 1991]

x
j
2 ¼ H

tanh a s j � 1ð Þð Þ þ bs j þ tanh að Þ
tanh að Þ þ b

where typical values of the coefficients are a = 3 and b =
0.32. These values yield Dx2 = 0.0028 and Dx2 = 0.026 near
the bottom and top wall, respectively, with a continuous
variation in the central region. Validation information will
be provided as part of the next section.

3. Simulation Results

[22] We show in Figure 2 typical concentration and
vorticity fields associated with a particle-driven current
computed via the model presented in section 2. Here the
current is traveling over a surface with a relatively
large slope angle, q = 5
, and is therefore predominantly
erosional. Resuspension increases the particle concentration
near the bottom boundary (blue and black zones) to a level
exceeding the initial concentration C = 1. Vortices are shed
behind the head of the current and form nearly circular

regions of nonzero particle concentration (yellow and green
in Figure 2a) embedded in ambient fluid. Such vortices
generate mixing with ambient fluid, causing the particle
concentration to decrease below its initial value. They are
also responsible for a significant fraction of the viscous
energy dissipation and therefore act to reduce the kinetic
energy of the current. The largest vorticity is found near the
bottom boundary due to the no-slip boundary condition.
The bottom shear stress is sufficiently large to cause
particles to be re-entrained. Behind the head of the current,
vortices are seen to vertically mix the particle concentration.
Fluid in the rear of the current tends to catch up with the
front [Härtel et al., 2000], causing high particle concen-
trations to develop near the head.

3.1. Influence of the Reduced Reynolds and
Péclet Numbers

[23] We begin by studying the impact of the reduced
Reynolds number used in our simulations on the main
features of the flow. Figure 3 shows the time evolution of
the position of the front of a density current (Us = 0)
traveling over a horizontal surface. For relatively small
reduced Reynolds numbers, ReT < 1,000, the front velocity
increases significantly with ReT. However this dependence
becomes negligible for larger reduced Reynolds numbers.
For sufficiently large values of ReT, other qualitative
features of the flow, such as the shape and number of
vortices shed behind the head or the size of the head, were
also observed to be nearly independent of ReT, which
validates the use of a reduced Reynolds number, provided
ReT > 1,000.
[24] The value of ReT only has a week influence on our

resuspension model. The nondimensional bottom shear
velocity near a solid wall, u*, is known to de-

Figure 2. Sample of (a) the concentration and (b) vorticity
of a particle-driven current traveling over a surface with an
inclination angle q = 5
, at t = 7.5 computed via our
numerical model. In Figure 2a the color code is: 0.1 < C 	
0.5 yellow, 0.5 < C 	 0.8 green, 0.8 < C 	 1 red, 1 < C 	
3 cyan, and 3 < C black. In Figure 2b, positive (counter-
clockwise), zero, and negative (clockwise) vorticity are
shown in red, green, and blue, respectively. The simulation
parameters are H = 4, L = 24, xf = 2, Us = 0.02, Rep = 3.83,
and ReT = PeT = 2,200. See color version of this figure at
back of this issue.

Figure 3. Time-dependence of the front position of a
density current (Us = 0) traveling over a horizontal surface
for various values of the reduced Reynolds number. For
ReT � O(1,000) the front velocity becomes nearly
independent of ReT. Other parameters are xf = 2, H = 4,
L = 12, and PeT = ReT.
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crease logarithmically with increasing Reynolds number
[Barenblatt, 1993], which tends to reduce resuspension for
large values of ReT. This may be understood by noting in
equation (9) that u* � 1/ReT so that even though larger ReT
generate larger @u/@x2, the net effect of increasing the
Reynolds number is to decrease u*. However, because of
the logarithmic dependence of u* on ReT, little effect was
observed in our simulations. The above resuspension model
also depends on PeT, as particles resuspended from the bed
are distributed over a layer of thickness dr � PeT

�1/2. The
influence on resuspension of PeT is analogous to that of
the ratio, r0, of the particle concentration near the bed to the
average concentration in the current of layer averaged
models [Parker et al., 1987]. A suitable value of PeT can
be determined from experimental measurements of r0. Data
provided by Garcı́a [1994] suggest that r0 = 2, which is
approximately reproduced in our simulations for PeT =
2,200, a value which will be used in the remainder of this
paper. Further comparisons between our simulations and
experiments are discussed in the next section.
[25] It should be noted that quantitatively similar results

were obtained from a cruder resuspension model. In pre-
liminary simulations, the diffusive flux at the bottom
boundary was set to zero, and resuspended particles were
simply added uniformly over a layer of uniform thickness,
dr 
 0.1, near the bottom boundary. The added mass of
resuspended particles was computed at every time step,
Mr(x1) = EsUsDt, and the concentration was increased in the
resuspension layer

C x1; x2; tð Þ ¼ C0 x1; x2; tð Þ þMr=dr; if 0 < x2 < dr

where C0 was obtained by advancing in time equations (2)–
(4). The general features of the flow agreed well with those
observed when particles are resuspended through a diffusive

flux. The dependence on ReT was similar in both models
and increasing dr was analogous to reducing PeT. Keeping in
mind that even the strategy of distributing resuspended
particles over the entire current height has been successfully
used in layer averaged models [cf. Garcı́a, 1994], it can be
hence be concluded that the dominant features of the flow,
and in particular whether or not a flow is self-sustaining, are
largely independent of the details of the resuspension
model.

3.2. Comparison With Experiments

[26] We present in this section a comparison between our
numerical simulations and experimental data published in
the literature. We first show in Figure 4 the measured length
of a density current (Us = 0) as a function of time and
compare it to our simulations. The experimental results
displayed here were obtained by Huppert and Simpson
[1980] and we used corresponding governing parameters
in our simulations, Re = 6300. In particular, the nondimen-
sional height of the container is H = 5.87, which ensures
that the influence of the top surface on the propagation of
the current is minimal. The time-dependent position of the
front, and consequently the speed of density current, is seen
to be accurately reproduced by the simulation. Experiment
and simulation are seen to agree well for more than
30 nondimensional time units, by which time the current
has lost most of its structure. This comparison demonstrates
the ability of the simulations to reproduce the front velocity.
[27] We proceed with a comparison of the progression of

particle-laden currents. In this context, experiments are
constrained by the necessity to maintain particles in sus-
pension before the lock is released. Therefore they are
usually performed in a shallow ambient, and with a free

Figure 4. Comparison of the position of the front of a
density current as a function of time measured experimen-
tally by Huppert and Simpson [1980] (circles) with that
computed via our simulations (solid line). In nondimen-
sional form the parameters used are: H = 5.87, C0 = 0.0096,
xf = 5.21, and Re = 6300, and experiments are nondimen-
sionalized using typical length and time L = 7.5 cm and t =
0.89 s. There are no free parameters in the simulations.

Figure 5. Progression of a particle-laden current with
governing parameters identical to those of the current
shown in the work of Bonnecaze et al. [1993, Figure 9a].
The arrows indicate the position of the front recorded in the
experiment. In nondimensional form the parameters used
are: H = 2, Us = 0.03, xf = 1.14, and Rep = 1.8, and
experiments are nondimensionalized using typical length
and time L = 7 cm and t = 0.64 s. The experimental
Reynolds number is Re = 7600; simulations were performed
with a reduced value ReT = 2200. See color version of this
figure at back of this issue.
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surface. The fact that we model the top surface as a no-slip
wall rather than a free surface is then expected to cause
more substantial discrepancies between experiments and
simulations because our simulations cannot capture the
vertical displacement of the top surface. We show in
Figure 5 simulations computed for identical parameter
values as in the experiments of Bonnecaze et al. [1993,
Figure 9a]. Here the concentration of a particle-laden
current is shown at two different times. The arrows indi-
cate the front position recorded in the experiment at
corresponding times. The experiments show some 3-D
turbulence and were performed at higher Reynolds number
(
7,600) than our simulations (ReT = 2,200). Nevertheless,
the concentration field shown in Figure 5 exhibits good
agreement with the experiments, which further justifies
the use of a reduced Reynolds number value. In particular,
the general shape, length, and consequently velocity, of the
current are rather well reproduced. The bore described by
Bonnecaze et al. [1993] due to the reflection of light fluid
off the back wall may also be observed in our simulations
and is responsible for the separation between the suspension
and the left wall. In our simulations, the bore appears to
travel somewhat faster than in the corresponding experi-
ments. The difference in bore velocity is likely due to our
assumption of a no-slip top boundary rather than a free
surface. Our model therefore does not accurately reproduce
the effects of the light fluid backflow. However, with the
exception of the progression of the bore, the main features
of the particle driven current are adequately captured by our
model and we therefore expect than in a deep ambient,

where no bore is present, our model would describe
particle-laden currents more accurately, as was the case
for density currents. It should be noted that in the experi-
ments, the bottom surface was a solid wall and we therefore
prevented any resuspension below the original level of the
bottom wall in our simulations.
[28] We compare in Figure 6 the deposit resulting from a

particle-driven current to that obtained via our simulations.
Here the experimental results of De Rooij and Dalziel
[2001] are compared to a computed deposit for a current
with corresponding parameters. Our simulations again make
use of a reduced Reynolds number (2,200 compared to
10,000 in the experiment) and are purely 2-D while the
experiments were conducted in a channel of width compa-
rable to its height. The results are seen to be in fairly good
agreement as to the extent and elevation of the deposit.
Differences are largest near the left hand wall and are
probably attributable to variations in the initial conditions:
in the experiments particles are kept in suspension by
continuous stirring before the lock is released while in our
simulations the suspension is initially quiescent. Our simu-
lations are also seen to yield more local variations in the
deposit height. Such oscillations result from eddies gener-
ated at the top of the current by the strong fluid backflow
present in a shallow ambient. Once again, the top surface
was free in the experiments, which acts to reduce the shear
and thus the formation of stationary eddies. It should be
pointed out that a similar comparison was presented by
Necker et al. [2002]. Their simulations were based on
similar equations but did not include resuspension or slope
variations. Both set of simulations agree with the experi-
ments because resuspension was in fact negligible in the
experimental results of DeRooij and Dalziel [2001]. Note
also that Necker et al. [2002] also looked at deposits
obtained via 3-D simulations and found negligible differ-
ences with those computed with a 2-D code.
[29] Unfortunately, lock-release experiments in which

resuspension plays a significant role to our knowledge have
not yet been published in the literature. In order to generate
sufficiently large current velocities, experiments have only
been performed with a constant inflow of particle-laden
fluid [Garcı́a and Parker, 1993]. At the present time, our
model remains constrained to finite volumes of heavy fluid
and we may not compare directly our simulations to experi-
ments where resuspension was significant. However, it may
be seen that the size and density (�d �100 mm, �rp�2.5 g/cm3)
of particles subject to re-entrainment at slope angles of order
5
 for a current of typical velocity (�1m/s) in our simulations
are commensurate with available experimental data [Garcı́a
and Parker, 1993; Garcı́a, 1994].
[30] The main discrepancies between experiments and

simulations therefore result from either initial or top surface
conditions. True turbidity currents typically occur in deep
ambients so that the effect of the free surface above are
inconsequential. We investigate the influence of the height
of the computational domain in the next section. The initial
velocity of the suspension also differ between experiments
and simulations, and is vastly unknown for real turbidity
currents. However, the discrepancies resulting from such
variations in initial conditions are short-lived. We are
here concerned with the development of the current at
intermediate times, where comparisons with experiments

Figure 6. Comparison of the normalized deposit height
(the total volume of the deposit is set to one) obtained
experimentally by De Rooij and Dalziel [2001] (dashed
line) with that obtained via our simulations (solid line). In
nondimensional form the parameters used are: H = 2, Us =
0.02, xf = 0.75, and Rep = 1.05, and experiments
are nondimensionalized using typical length and time L =
13.25 cm and t = 1.64 s. The experimental Reynolds
number is Re = 10,000; simulations were performed with a
reduced value ReT = 2,200.
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show that our model adequately describes the dynamics of
the particle-laden gravity currents.

3.3. Effect of the Computational Domain Height

[31] We now investigate the influence of the computa-
tional domain height, H, on the propagation velocity of the
current. Experiments show that light fluid back flow may
significantly reduce the velocity of currents spreading
in shallow surroundings [Huppert and Simpson, 1980].
Figure 7a shows the progression of the nose of density
currents (Us = 0), defined as the furthest point in the x1

direction where C > 0.5, traveling over a flat surface for
different values of H. After a brief acceleration period, the
velocity of the current’s front remains nearly constant over
the first 20 nondimensional time units. At longer times, the
current decelerates slowly as the height of its head
decreases. Currents traveling in deep ambient fluid are not
readily affected by the fluid back flow and thus travel faster
downstream. Such currents also shed significantly fewer
vortices, and therefore dissipate much less energy through
viscous effects. It may be seen from Figure 7a that compu-
tations performed with H � 4 are not significantly influ-

Figure 7. (a) Time dependence of the front velocity, uf, for different values of the computational domain
height, H for a fixed initial heavy fluid height of 2. The dependence of the front velocity on H is relatively
weak for H � 4. (b) Time dependence of the front velocity for different inclination angles q for both
shallow, H = 2, and deep, H = 4, ambients. In these simulations we consider density currents (Us = 0)
propagating over a horizontal surface with ReT = PeT = 2,200 and initial length xf = 2.

Figure 8. Time dependence of the current mass normalized by the initial mass for various initial
length, xf, at two different inclination angles, (a) q = 3
 and (b) q = 4
. Provided that xf � 1, the
long-term behavior of the current appears to be independent of the precise value of xf. In these
simulations we consider deep-water particle-laden currents, H = 4, with Us = 0.02, Rep = 3.83, and
ReT = PeT = 2,200.
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enced by the precise value of H and thus may be used to
simulate gravity currents in very deep surroundings.
[32] Figure 7b shows the front velocity, uf, of density

currents propagating on slopes of constant angles in both
shallow (H = 2) and deep (H = 4) computational domains.
In a deep ambient the front velocity is known experimen-
tally to increase slightly with slope angle both for constant
flux [Britter and Linden, 1980] and constant initial volume
[Beghin et al., 1981]. Our simulations reveal a similar
dependence of uf on the slope angle. After an initial
slumping phase, the currents travel at nearly constant speed,
uf = 0.77 for q = 0
, uf = 0.80 for q = 5
 and uf = 0.83 for q =
10
, showing a nearly linear dependence of the front
velocity on q. Significant mixing between the current and
the ambient fluid is observed for large slope angles, reduc-
ing the velocity at later times as the size of the head
decreases. In a shallow ambient, the slope angle has a

negligible impact on the propagation velocity of the current
(Figure 7b). Irrespectively of the slope angle, lighter fluid
back flow hinders the progression of the current and
generates numerous energy dissipating vortices.

3.4. Influence of the Initial Current Length

[33] For resuspending currents, the time evolution of the
mass of suspended particles is of primary importance in the
description of the flow. If the mass of the currents increases
in time, currents which we refer to as self-sustaining, the
flow is mostly eroding and may travel for very large
distances provided that the inclination angle remains suffi-
ciently large. In contrast, currents traveling along relatively
flat surfaces see their mass decrease in time and are mostly
depositional. These currents quickly stop spreading as
particles are deposited.
[34] We proceed to investigate the influence of the initial

current length, xf, on the time evolution of gravity currents
and in particular on their self-sustaining quality. Figure 8a
shows the time dependence of the mass of suspended
particles of currents propagating over a small inclination
angle, q = 3
, such that a current with xf = 2 is depositional.
Here the initial mass is normalized to one. The mass of
suspended particles first increases briefly during the slump-
ing phase of the current. However, at later times, the settling
of particles exceeds resuspension and the total mass
decreases. Increasing the initial length is seen to have no
qualitative impact on the time dependence of the mass. The
initial normalized mass increase is less for longer currents
since the amount of resuspended particles near the front is
nearly independent of xf.
[35] For a larger slope angle, q = 4
, a current with xf � 1

becomes self-sustaining and its mass increases with time,
see Figure 8b. Once again, the relative mass increase is
smaller for longer currents. Notice that very short and tall
currents, e.g., with xf = 0.5 behave in a qualitatively
different manner and appear mostly depositional. The initial
length of the current therefore has little impact on whether
or not the current will become self-sustaining, provided it is
larger than a critical value near xf = 1. In the remainder of
the simulations presented here, we thus fix the initial current
length equal to its initial height at xf = 2.

3.5. Influence of Resuspension

[36] Figure 9 shows an example of a strongly resuspend-
ing current. Here the slope angle is sufficiently large, q = 5
,
and the particle settling speed sufficiently small, Us = 0.02,
so that the amount of resuspended particles exceeds that of
deposited particles. Unresolved turbulent motions, modeled
as a diffusive effect, are responsible for the high concen-
tration observed below x2 
 0.1, while the increase in
particle concentration at higher levels is mostly attributable
to the advection of the concentration through resolved fluid
motions. As the current propagates downslope, its mass and
velocity increase. In our system, the only saturation mech-
anism is the resuspension upper bound Es 	 0.3/�C0, so the
current may grow until the average particle concentration
reaches a level where the average particle-particle interac-
tions may not be neglected (�C �10%) and our model no
longer applies.
[37] In the early stages of motion (Figure 9a), the current

resembles a noneroding gravity current and only a small

Figure 9. (a, c, and e) Evolution of the particle
concentration and (b, d, and f) evolution of the bed height,
resuspension factor Es, and average concentration Ca =R
0
HCdz, multiplied by 20 for scaling purposes (red lines), of

a strongly resuspending gravity current. The color code is:
0.1 < C 	 0.5 yellow, 0.5 < C 	 0.8 green, 0.8 < C 	 1 red,
1 < C 	 3 cyan, and 3<C black. In Figures 9b, 9d, and 9f
the left scale refers to the bed height (solid lines), and the
right scale to Es (dashed lines) and 20 Ca (red lines). Other
parameters are q = 5
, �d = 100 mm, �h = 1.6 m, �C0 = 0.5%,
Us = 0.02, ReT = PeT = 2,200, xf = 2, and H = 4. See color
version of this figure at back of this issue.

C12022 BLANCHETTE ET AL.: SIMULATIONS OF ERODING GRAVITY CURRENTS

9 of 15

C12022



boundary layer at the bottom exhibits a larger particle
concentration than �C0. For comparison, we have included
in Figure 10a an example of a current where the flow
parameters are identical but resuspension is not taken into
account (Es = 0). In both cases, mixing with clear fluid
dilutes the upper part of the current and the vortices shed
behind the front are very similar. In the presence of
resuspension, the particle concentration increases near the
front and the formation of a massive head is observed
(Figures 9c and 9e). The volume of the head does not
change significantly as the current progresses, but it
becomes denser, as illustrated by the integrated concentra-
tion profile, Ca =

R
0
H C dz, displayed in red in Figures 9b,

9d, and 9f). The head becomes progressively heavier as
resuspended particles accumulate near the front and it thus
propagates faster, generating further erosion.
[38] In the presence of resuspension, particles are depos-

ited near the left wall, but strongly eroded near the initial

front position, xf = 2, as the initial slumping phase generates
vigorous erosion (Figure 9b). Further downstream, x1 > xf,
the erosion pattern is mostly flat in regions behind the
current and increases nearly linearly toward the position of
the nose of the current. The thin boundary layer preceding
the bulk of the current indicates that the erosion process
may begin ahead of the front of the current as motions in the
ambient fluid are sufficiently vigorous to generate resus-
pension, The magnitude of the resuspension factor remains
nearly constant, Es 
 50, and is close to saturation (Es < 0.3/
�C0 = 60), in the regions where particle-laden fluid is
present. The depth of the eroded region is thus approxi-
mately proportional to the time interval during which fluid
overlies a given point and depends only weakly on the
distance from the source. In the absence of resuspension,
see Figures 10b, 10d, and 10f, the deposit may only increase
in time. The local height of the deposit reflects the time
during which the current overlaid a given point.

3.6. Dependence of Mass and Velocity on Slope Angle

[39] The slope angle, q, plays a determinant role in the
long term behavior of resuspending currents. For sufficiently
large values of q, the resuspended particles contribute
significantly to the potential energy of the current and allow
the current to become self-sustaining. Figure 11 shows the
time evolution of the mass of suspended particles
(Figure 11a) and front velocity (Figure 11b) of currents
propagating at different slope angles. In the depositional
regime (q = 0
, q = 2
), the mass of the current quickly
decreases and shows little dependence on the slope angle.
Similarly, the velocity of the front slowly decreases after a
brief acceleration period. As particles settle out of suspension,
the driving force is reduced and the front velocity decreases
earlier than for a corresponding density current, see Figure 7.
[40] For a larger slope angle (q = 6
), the mass increases

in a nearly exponential fashion while it increases almost
linearly for an intermediate angle (q = 4
). The slope angle
is clearly seen to control the rate of increase, with larger
slope angles generating significantly larger entrainment
rates. Correspondingly, the front velocity increases with
slope angle. As the head becomes denser, the pressure
difference between the current and the ambient increases,
thus giving rise to a larger driving force. For given flow
parameters, there exists a critical slope angle, qc, above
which the mass of the current increases in time and below
which all particles eventually settle out. In the next section,
we investigate the dependence of the critical angle of
various flow parameters.

3.7. Self-Sustainment Criteria

[41] We now wish to characterize the conditions under
which a gravity current is self-sustaining. We consider only
currents propagating in deep ambients, H = 4, and with
initial aspect ratio equal to one (xf = 2). We also fix the
reduced Péclet and Reynolds numbers, as well as the particle
density and the fluid density and viscosity. We focus our
attention on the effects of the initial (dimensional) height of
heavy fluid, particle concentration and particle radius.
[42] We first note that the particle flux at the lower

boundary, F = (�(cos q) Cjx2=0 + Es) Us, allows to readily
distinguish between the influence of the particle settling
speed, Us, and that of the resuspension factor, Es. We find

Figure 10. (a, c, and e) Evolution of the particle
concentration and (b, d, and f) evolution of bed height
(blue lines) and average concentration Ca =

R
0
HCdz (red

lines), of a nonresuspending gravity current at times t = 5
(Figures 10a and 10b), 10 (Figures 10c and 10d) and 15
(Figures 10e and 10f). The color code is 0.1 < C 	 0.5
yellow, 0.5 < C 	 0.8 green, and 0.8 < C 	 1 red. The flow
parameters are as in Figure 9: q = 5
, �d = 100 mm, �h = 1.6 m,
�C0 = 0.5%, Us = 0.02, ReT = PeT = 2,200, xf = 2, and H = 4,
but the resuspension factor Es has been set to 0. See color
version of this figure at back of this issue.
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that if the resuspension factor is kept constant, the self-
sustaining quality of the current is largely unaffected by
changes in the particle settling speed. Changes in Us

influence the timescale over which particles settle or are

resuspended but do not affect the mass balance directly.
However, variations in the particle settling speed typically
affect Es and therefore, through the resuspension factor,
influence the critical self-sustaining angle.

Figure 11. Time dependence of the (a) normalized mass of suspended particles and (b) front velocity of
currents propagating over slopes of various slope angle. A critical angle may be found, qc = 3.75
, for
which q > qc gives rise to currents whose mass increases indefinitely and q < qc generates depositional
currents. Here the flow parameters are ReT = PeT = 2,200, xf = 2, H = 4, �d = 100 mm, �h = 1.6 m, �C0 =
0.5%, and Us = 0.02.

Figure 12. (a) Dependence of the critical self-sustaining angle qc on the initial heavy fluid height, �h,
(solid line, top scale) and on the initial particle concentration �C0, (dashed line, bottom scale).
(b) Dependence of the critical angle on particle radius (solid line). For comparison we show the
dependence of 50/Es on particle radius (dashed line), where Es is the resuspension factor computed using
a typical value of the shear velocity u* = 0.13. Currents located above the curves are self-sustaining,
while those located below are depositional. The parameters used in these simulations are ReT = PeT =
2,200, xf = 2, H = 4, �d = 100 mm, �C0 = 0.5%, and �h = 1.6 m. Each of the last three parameters is varied
individually while keeping the other two fixed at the value mentioned here.
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[43] We present in Figure 12 the dependence of the
critical slope angle qc on the heavy fluid height and initial
particle concentration in Figure 12a and particle radius in
Figure 12b. Here we keep ReT = PeT fixed, but we allow all
other parameters to vary. The dimensional settling speed,
buoyancy velocity, particle Reynolds number and resuspen-
sion factor are computed using the formulas of Dietrich
[1982] and equations (1), (9) and (10), respectively, with
varying values of �h, �d, and �C0. As expected, large critical
slope angles are associated to small values of �C0 and �h.
As either �C0 or �h increases, the typical velocity of the

current �ub =
ffiffi
ð

p
g�h�C0RÞ increases, and currents may thus

generate larger bottom shear stresses. In nondimensional
form, as the current velocity increases, the settling speed Us

diminishes, causing Es to increase. The influence of �C0 is

weaker than that of �h; particle re-entrainment will affect low
particle concentration currents more readily as the relative
particle concentration will then become larger, thus partially
counteracting the fact that low values of �C0 reduce the
current velocity.
[44] Figure 12b shows that increasing the particle radius

renders resuspension more difficult since large particle radii
cause Es to decrease. For comparison, we show the depen-
dence on particle size of a typical value of the inverse of the
resuspension factor (50/Es, scaled for plotting purposes).
Both curves are nearly parallel, indicating that Es is the
determinant factor in the self-sustaining quality of a current.
This underlines the importance of accurately determining Es

and in particular the value of Z at which resuspension
first becomes important (equation 10), as it will directly
influence the value of the critical angle for given flow
parameters.
[45] In the parameter regime and for the resuspension

factor investigated here, we therefore find, by fitting the
curves shown in Figures 12a and 12b to a power law, that
currents are self-sustaining if

1 < K
sin qc �h�C0

� �5=3
�d11=4 �C0


 sin qc
sin 3:75�

�h
1:6m

�C0

0:5%

� �5=3
�C0

0:5%

� �
�d

10�4m

� �11=4 ð11Þ

where K is a constant determined by the critical angle
associated with our default parameter values �d = 10�4 m,
�h = 1.6 m and �C0 = 0.005. Turbidity currents may thus be
expected to grow in size as long as the inclination angle of
the lower boundary is larger than qc, and to decay over
regions where q < qc.

3.8. Broken Slope Currents

[46] We present here an application of our model to
turbidity currents traveling down a slope of varying angle.
To simulate the base of the continental slope, we selected a
geometry where the initial slope is 5
 and the surface away
from the source is horizontal. The slope remains constant
for x1 < 7 and decreases linearly to 0
 in the region 7 	 x1 <
9. The current and particle parameters were chosen to cause
the mass of the current to increase over the inclined region.
[47] Figure 13 shows the progression of a current travel-

ing down a broken slope. In the early stages of motion, the
current is erosional and its concentration increases near the
lower boundary. However, upon reaching the horizontal
bed, the current becomes depositional and eventually comes
to rest. The transition from flow over an incline to flow over
a horizontal bottom surface occurs smoothly and no signif-
icant changes in the height of the current (hydraulic jump) is
observed near the corner. The finite volume of heavy fluid
presumably prevents us from observing steady hydraulic
jumps such as those reported by Garcı́a [1993].
[48] Figure 14a illustrates the dependence of the mass of

suspended particles and front velocity on the position of the
current tip. As the current travels downslope, its mass
increases through erosion of the bed. The suspended mass
continues to increase even after the nose has reached the flat
surface, as most of the heavy fluid is still traveling downhill.
At later times, all the heavy fluid overlies a horizontal
surface and the current becomes depositional, causing the

Figure 13. Particle concentration of a resuspending
current traveling down a broken slope at times t = 2, 8,
14, 20, and 26. The initial slope angle is q = 5
, and the
angle decreases linearly to 0 in the region 7 	 x1 < 9.
Corresponding current mass, velocity, and particle deposits
may be found in Figure 14. The color code is: 0.1 < C 	 0.5
yellow, 0.5 < C 	 0.8 green, 0.8 < C 	 1 red, 1 < C 	 3
cyan, and 3 < C black. The flow parameters are, again, �d =
100 mm, �h = 1.6 m, �C0 = 0.5%, Us = 0.02, ReT = PeT =
2,200, xf = 2, and H = 4. See color version of this figure at
back of this issue.

C12022 BLANCHETTE ET AL.: SIMULATIONS OF ERODING GRAVITY CURRENTS

12 of 15

C12022



mass to decrease. The front velocity, after the initial
slumping phase, increases while overlying a surface of
sufficiently large slope angle. When the nose reaches the
corner, the front velocity starts to decrease, showing that the
local slope angle readily influences the front velocity. As
the current spreads, the velocity keeps decreasing as par-
ticles are deposited.
[49] The corresponding deposition pattern is presented in

Figure 14b for different times. Particles are deposited near
the left wall before the eroding character of the current
develops as it moves downstream. The depth of the eroded
region remains constant over the region of large slope
angle. Near the corner, the current enters a depositional
regime and leaves a deposit of maximum height at the
beginning of the flat region. The deposit then decreases
with distance from the corner. If a current transports
sufficient particles, the geometry of the bottom surface
may therefore be significantly altered. In particular, the
position of the corner is shifted to the left. The cumulative
effect of successive turbidity currents could then displace
or create large topographic features and have important
geological consequences.

4. Conclusion

[50] We have developed a high-resolution simulation
model for resuspending turbidity currents traveling over
complex bottom topographies. The model allows for pre-
dictions of the erosion and deposition rates of interest in
geological and industrial processes. Provided the curvature
of the bottom surface remains small, the flexibility of the
model allows us to consider such problems as how succes-

sive gravity currents are influenced by deposits resulting
from earlier currents. We may therefore characterize the
evolution of large-scale deposit structures, which could
eventually be used to locate oil and gas fields hosted by
turbidites. In particular, we may simulate the spontaneous
formation or damping of local bed topography and the
evolution of the overall system topography. Validation
information has been presented to support the computa-
tional approximations required in order to model realistic
flows. It was demonstrated that a reduced Reynolds number
ReT of O(1000–10,000) is capable of reproducing many of
the flow features observed at much larger physical Reynolds
numbers inaccessible to direct numerical simulations
[Parsons and Garcı́a, 1998]. The resuspension process is
modeled on the basis of the empirical relations determined
experimentally by [Garcı́a and Parker [1993], by means of
a diffusive flux boundary condition at the top of the particle
bed. Here the value of the reduced Péclet number PeT was
chosen based on the experimental observations by Garcı́a
[1994]. In the case of self-sustaining currents, it was seen
that the qualitative trends, in particular the dependence of
the critical self-sustaining angle on particle size or concen-
tration, are independent of the value of PeT.
[51] For strongly resuspending currents, particle-particle

interactions may become important. Currents propagating
on a slope of large angle were seen to develop regions
where the particle concentration exceeds 5%. The viscosity
of the suspension [Huang and Garcı́a, 1998], as well as the
particle settling speed would then be altered by the presence
of neighboring particles [Richardson and Zaki, 1954]. Such
effects were not included in our simulations, as our main
interest was to characterize the onset of self-sustainment,

Figure 14. (a) Front velocity (solid line) and suspended mass (dashed line) as a function of the position
of the nose of a current propagating over a broken slope. The height of the bottom surface is shown as the
dotted line. (b) Dependence of the deposit height on the distance from the left wall at various times for the
same current. The region left of the first vertical dotted line has a slope angle of q = 5
, and that right of
the second line one of q = 0
. Other flow parameters are ReT = PeT = 2,200, xf = 2, H = 4, �d = 100 mm, �h =
1.6 m, Us = 0.02, and �C0 = 0.5%.
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but they should be incorporated in simulations aiming to
describe high particle concentration currents. A second
important aspect to incorporate in future research is the
polydispersity of the suspended particles, which may have a
nontrivial influence on the self-sustaining character of a
current. Our model may easily be extended to consider
different particle sizes by keeping track of several particle
concentrations. The concentration of particles in the bed
must also be modeled, since only the topmost particles, the
so-called active layer, are available for resuspension [Parker
et al., 2000]. Armoring may then occur, where large
deposited particles prevent the current from re-entraining
smaller underlying particles, which thus prevents further
growth of the current [Karim and Kennedy, 1986]. Studying
the combined effects of polydispersity and repeated flows
should lead to a better understanding of the formation of
realistic deposits and will therefore be investigated in the
near future. Another potentially important aspect of the flow
not taken into account in our study is the effect of variations
in the spanwise direction. Incorporating such effects
requires 3-D simulations, which remain very demanding
computationally. However, from a theoretical point of view,
our model may be expanded to simulate 3-D flows in a
straightforward manner using the approach described by
Necker et al. [2003] for density currents. Given the appro-
priate computing resources, one could thus study the
formation of 3-D structures such as levees, canyons or
mini-basins.

Appendix A: Finite-Difference Formula

[52] We show here as an example, the formula obtained
to estimate the first derivative of a function f for non-
constant Dx2

af 0I�1 þ f 0i þ bf 0iþ1 ¼ afi�2 þ bfi�1 þ gfi þ dfiþ1 þ �fiþ2; ðA1Þ

where

a ¼
xnnx

2
pxpp

xnn � xnð Þ xn þ xp
� �2

xn þ xpp
� � ;

b ¼ �x2nxnnxpp

xp � xpp
� �

xnn þ xp
� �

xn þ xp
� �2 ;

a ¼
�x2nx

2
pxpp

xn � xnnð Þ2xnn xnn þ xp
� �2

xnn þ xpp
� � ;

� ¼
x2nx

2
pxnn

xp � xpp
� �2

xpp xn þ xpp
� �2

xnn þ xpp
� � ;

b ¼ xnnx
2
pxpp

6x3n � 2xnnxpxpp � x2n 5xnnð Þ þ x2n 4xp þ 5xpp
� �

� xn 3xnnxp þ 4xnnxpp � 3xpxpp
� �

xn xn � xnnð Þ2 xn þ xp
� �3

xn þ xpp
� �2

xn xn � xnnð Þ2 xn þ xp
� �3

xn þ xpp
� �2

 !
;

d ¼ xnnx
2
nxpp

�6x3p þ 2xnnxnxpp þ x2p 5xpp
� �

� x2p 4xn þ 5xnnð Þ � xp 3xppxn þ 4xnnxpp � 3xnxnn
� �

xp xp � xpp
� �2

xn þ xp
� �3

xnn þ xp
� �2

xp xp � xpp
� �2

xn þ xp
� �3

xnn þ xp
� �2

 !
;

g ¼ 2

xn
þ 1

xnn
� 2

xp
� 1

xpp
;

xp ¼ xiþ1
2 � xi2; xpp ¼ xiþ2

2 � xi2;

xnn ¼ xi2 � xi�2
2 ; xn ¼ xi2 � xi�1

2 :

Similar formulae were obtained for second derivative and
approximations near and at the boundary.
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Bosse, T., L. Kleiser, C. Härtel, and E. Meiburg (2005), Numerical simula-
tion of finite Reynolds number suspension drops settling under gravity,
Phys. Fluids, 17(3), 037101.

Britter, R. E., and P. F. Linden (1980), The motion of the front of a gravity
current traveling down an incline, J. Fluid Mech., 99, 531–543.

Choi, S. U., and M. H. Garcı́a (2002), K-� turbulence modeling of density
currents developing two dimensionally on a slope, J. Hydrol. Eng., 128,
55–63.

Choi, H. G., and D. D. Joseph (2001), Fluidization by lift of 300 circular
particles in plane Poiseuille flow by direct numerical simulation, J. Fluid
Mech., 438, 101–128.

de Rooij, F., and S. B. Dalziel (2001), Time and space resolved measure-
ments of deposition under turbidity currents, Spec. Publ. Assoc. Sedi-
ment, 31, 207–215.

Dietrich, W. E. (1982), Settling velocity of natural particles, Water Resour.
Res., 18(6), 1615–1626.

Elghobashi, S. E., and T. W. Abouarab (1983), A two-equation turbulence
model for two-phase flows, Phys. Fluids, 26(4), 931–938.

Fletcher, C. A. J. (1991), Computational Techniques for Fluid Dynamics,
vol. 2, 2nd ed., Springer, New York.

Garcı́a, M. H. (1993), Hydraulic jumps in sediment-driven bottom currents,
J. Hydrol. Eng., 119(10), 1094–1117.

Garcı́a, M. H. (1994), Depositional turbidity currents laden with poorly
sorted sediment, J. Hydrol. Eng., 120(11), 1240–1263.

Garcı́a, M. H., and G. Parker (1991), Entrainment of bed sediment into
suspension, J. Hydrol. Eng., 117(4).

Garcı́a, M. H., and G. Parker (1993), Experiments on the entrainment of
sediment into suspension by a dense bottom current, J. Geophys. Res., 98,
4793–4807.

Hagatun, K., and K. J. Eidsvik (1986), Oscillating turbulent boundary-layer
with suspended sediments, J. Geophys. Res., 91, 3045–3055.
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Figure 2. Sample of (a) the concentration and (b) vorticity
of a particle-driven current traveling over a surface with an
inclination angle q = 5
, at t = 7.5 computed via our
numerical model. In Figure 2a the color code is: 0.1 < C 	
0.5 yellow, 0.5 < C 	 0.8 green, 0.8 < C 	 1 red, 1 < C 	
3 cyan, and 3 < C black. In Figure 2b, positive (counter-
clockwise), zero, and negative (clockwise) vorticity are
shown in red, green, and blue, respectively. The simulation
parameters are H = 4, L = 24, xf = 2, Us = 0.02, Rep = 3.83,
and ReT = PeT = 2,200.

Figure 5. Progression of a particle-laden current with
governing parameters identical to those of the current
shown in the work of Bonnecaze et al. [1993, Figure 9a].
The arrows indicate the position of the front recorded in the
experiment. In nondimensional form the parameters used
are: H = 2, Us = 0.03, xf = 1.14, and Rep = 1.8, and
experiments are nondimensionalized using typical length
and time L = 7 cm and t = 0.64 s. The experimental
Reynolds number is Re = 7600; simulations were performed
with a reduced value ReT = 2200.
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Figure 9. (a, c, and e) Evolution of the particle
concentration and (b, d, and f) evolution of the bed height,
resuspension factor Es, and average concentration Ca =R
0
HCdz, multiplied by 20 for scaling purposes (red lines), of

a strongly resuspending gravity current. The color code is:
0.1 < C 	 0.5 yellow, 0.5 < C 	 0.8 green, 0.8 < C 	 1 red,
1 < C 	 3 cyan, and 3<C black. In Figures 9b, 9d, and 9f
the left scale refers to the bed height (solid lines), and the
right scale to Es (dashed lines) and 20 Ca (red lines). Other
parameters are q = 5
, �d = 100 mm, �h = 1.6 m, �C0 = 0.5%,
Us = 0.02, ReT = PeT = 2,200, xf = 2, and H = 4.

Figure 10. (a, c, and e) Evolution of the particle
concentration and (b, d, and f) evolution of bed height
(blue lines) and average concentration Ca =

R
0
HCdz (red

lines), of a nonresuspending gravity current at times t = 5
(Figures 10a and 10b), 10 (Figures 10c and 10d) and 15
(Figures 10e and 10f). The color code is 0.1 < C 	 0.5
yellow, 0.5 < C 	 0.8 green, and 0.8 < C 	 1 red. The flow
parameters are as in Figure 9: q = 5
, �d = 100 mm, �h = 1.6 m,
�C0 = 0.5%, Us = 0.02, ReT = PeT = 2,200, xf = 2, and H = 4,
but the resuspension factor Es has been set to 0.
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Figure 13. Particle concentration of a resuspending current traveling down a broken slope at times t = 2,
8, 14, 20, and 26. The initial slope angle is q = 5
, and the angle decreases linearly to 0 in the region 7 	
x1 < 9. Corresponding current mass, velocity, and particle deposits may be found in Figure 14. The color
code is: 0.1 < C 	 0.5 yellow, 0.5 < C 	 0.8 green, 0.8 < C 	 1 red, 1 < C 	 3 cyan, and 3 < C black.
The flow parameters are, again, �d = 100 mm, �h = 1.6 m, �C0 = 0.5%, Us = 0.02, ReT = PeT = 2,200, xf = 2,
and H = 4.
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