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[1] We study the flow of particle-laden turbidity currents down a slope and over an
obstacle. A high-resolution 2-D computer simulation model is used, based on the
Navier-Stokes equations. It includes poly-disperse particle grain sizes in the current and
substrate. Particular attention is paid to the erosion and deposition of the substrate particles,
including application of an active layer model. Multiple flows are modeled from a lock
release that can show the development of sediment waves (SW). These are stream-wise
waves that are triggered by the increasing slope on the downstream side of the obstacle.
The initial obstacle is completely erased by the resuspension after a few flows leading
to self consistent and self generated SW that are weakly dependant on the initial obstacle.
The growth of these waves is directly related to the turbidity current being self sustaining,
that is, the net erosion is more than the net deposition. Four system parameters are
found to influence the SW growth: (1) slope, (2) current lock height, (3) grain lock
concentration, and (4) particle diameters. Three phases are discovered for the system:
(1) “no SW,” (2) “SW buildup,” and (3) “SW growth”. The second phase consists of a
soliton-like SW structure with a preserved shape. The phase diagram of the system is
defined by isolating regions divided by critical slope angles as functions of current lock
height, grain lock concentration, and particle diameters.
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generation, J. Geophys. Res., 117, C06007, doi:10.1029/2011JC007539.

1. Introduction

[2] Turbidity currents can trigger a variety of topographi-
cal behaviors by erosion and deposition over the seafloor,
such as sediment waves (SW). These currents are particle
laden and gravity driven, where the particles are suspended
by fluid turbulence [Meiburg and Kneller, 2010]. When the
bottom slope is steep enough, the current can propagate in a
self-sustained mode with increasing mass and high velocity
[Parker et al., 1986; Blanchette et al., 2005; Sequeiros et al.,
2009; Pantin and Franklin, 2009].
[3] Migrating SW generated by erosive turbidity currents

have been reported in a variety of marine settings which
include splays from submarine levees and submarine fans
[Wynn et al., 2000; Wynn and Stow, 2002]. The timescale
of SW formation can be thousands of years and include a
sequence of many turbidity currents. Typical SW wavelengths

are in the range of 100 m to 5 km, and heights are in the range
of 5 m to 100 m. A series of turbidity currents flowing across a
rough sea can form a field of SW that migrates upstream
[Kubo and Nakajima, 2002; Lee et al., 2002]. A relation, l =
2ph was found between the SW wavelength, l, and the tur-
bidity current height, h, that is in agreement with observation
for typical h = 60 m and l = 380 m [Normark et al., 1980;
Wynn and Stow, 2002].
[4] The traditional explanation of the mechanism for gen-

erating a train of up-streaming SW is based on a sequence of
turbidity currents flowing over an erodible bed. A super-
critical flow, where the kinetic energy of the flow is larger
than the potential energy (Froude number larger than one),
is considered a favorable condition for the SW formation.
An obstacle on the slope induces an erosion on the down-
stream side of the obstacle leading to a subsequent decrease
in slope and to the formation of the next obstacle. This
establishes a train of downstream crests in the waveform.
The upstream migration of the waveform results from the
preferential deposition of sediment on the upslope and the
preferential erosion on the downslope. The generation of
downstream undulations and the upstream migration by
deposition and erosion can generate an extensive SW field.
This mechanism of generating SW is similar to the gen-
eration of transportational cyclic steps [Parker and Izumi,
2000; Taki and Parker, 2005; Sun and Parker, 2005].
Each cyclic step is bounded by a hydraulic jump and the
resulting deposition and erosion causes the waves to migrate
upstream.
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[5] In 3-D lock release of a turbidity current onto a plane,
the system initially develops a cascade to small-scale tur-
bulence. 3-D simulations [Hartel et al., 2000; Necker et al.,
2002; Cantero et al., 2007, 2008] show the system develops
a set of large vortexes that effects the flow envelope and
depends on Re. Several stages take place in the flow
depending on the front velocity [Cantero et al., 2007, 2008].
Initially, the current accelerates; then the front velocity
reaches a maxima; later the front velocity reaches a shallow
minima; finally, the front velocity increases to a steady state.
In the final steady state stage (slumping stage) large scale
vortexes are formed and the small-scale turbulence has a
small effect on the current shape and flow. After the steady
state, there are two terminal stages. First, the current gradu-
ally slows down (inertial stage), then the flow slows down
faster (viscous stage). During these terminal two stages there
is a fast breakup of vortexes to small-scale turbulence which
strongly affects the current shape and reduces the front
velocity. In 2-D, there is no small-scale turbulence as in 3-D.
The 2-D flow released from the lock accelerates and reaches
a steady state front velocity stage as in the 3-D case for all
Re [Hartel et al., 2000; Necker et al., 2002]. In this stage the
2-D current behaves as the transverse average of the 3-D
current. The steady state stage is the important stage for the
formation of the sediment waves (SW) in the substrate.
Therefore, in our study where we consider a 2-D lock release
of large mass onto a plane that results in a steady state,
self sustaining flow that generates the SWs, 2-D can replace
3-D for all Re. During the terminal stages, when the front
decelerates, the vortex coupling is stronger in 2-D than in 3-D,
the flow energy cascade is different, and the front velocity
in 2-D decays slower than in 3-D. At this stage, the flow
shape in 2-D and 3-D become very different. We, therefore,
conclude that 2-D simulations can replace 3-D simulations
at the steady state stage when SWs are formed, for all Re.
[6] In 3-D, the flow generates a shear layer close to the

bottom boundary that is an ensemble of local turbulence of
various types. This turbulence interacts with the substrate
and causes a resuspension of particles. An empirical relation
is applied to calculate the resuspension that depends on the
shear velocity. In 3-D, the shear velocity can be calculated
from the bottom flow velocity, including the effect of basal
turbulence on the flow. In 2-D, the local turbulence and the
generation of the shear layer do not exist so that a closure
relation is required for the shear velocity that closes the set
of flow equations. It is common to apply a phenomenolog-
ical equation for the turbulent kinetic energy. The shear
velocity is taken to be proportional to this energy. The tur-
bulent kinetic energy includes source and sink terms due to
the gain and loss from the resuspension and settling. This
leads to the saturation of the net resuspension. The model
was tested and found consistent with experiment [Parker
et al., 1986; Pratson et al., 2001; Kostic and Parker, 2006].
A simplified version of the closure condition, that assumes
a linear relation between the shear velocity and the bottom
flow velocity, was validated against experiments [Parker
et al., 1986]. The constant of proportionality in this relation-
ship is the bed drag coefficient. This is an approximate rela-
tion whose main disadvantages are that it is not coupled to
a turbulence relation and that it does not include saturation
of the resuspension. This simplified model, verified against

experiment, is very useful in computation and therefore is
applied in this work.
[7] The turbidity current code applied in this work is an

extended version of the code developed and applied in
Blanchette et al. [2005, 2006]. This code is based on the
numerical model developed by Hartel et al. [2000] and
Necker et al. [2002]. In Blanchette et al. [2005] validation of
the numerical model was done by comparison with two
experimental data sets and good agreement was obtained.
A comparison was done for a lock release system of density
currents measured experimentally by Huppert and Simpson
[1980]. The front position as a function of time, for Re =
6300, was compared. A further comparison was done for
a particle driven current in a lock release mode. In this
case, the deposit height as a function of position for several
times (Re = 2200) was compared to the experiment by
de Roojj and Dalziel [2001]. A similar simulation was
done also by Necker et al. [2002], but they considered the
final deposition as a function of position for a 3-D simula-
tion and found negligible differences with those computed
in 2-D simulations.
[8] Numerical simulations have been carried out in order

to explain the formation of SW by turbidity currents. The
models can be divided into two categories: depth-averaged
models, and depth-dependant models. The Navier-Stokes
depth-averaged models perform 1D simulations of turbidity
currents flowing downslope over an erodible bed. Pre-
existing topography, such as surface roughness or a break in
slope, are required to trigger the formation and growth of
SW [Kubo and Nakajima, 2002; Fildani et al., 2006; Kostic
and Parker, 2006]. These models do not include the undu-
lating structure in the turbulent flow imprinted by the SW
periodicity. They also are unable to capture the detailed
interaction between the sediment bed and the current close
to the bed.
[9] A linear stability analysis (LSA) to generate SW based

on the 2-D depth dependent Navier-Stokes equations was
done by Hall et al. [2008], Hall [2009], and Lesshafft et al.
[2011]. This is built on the classical work by Flood [1988].
Their results are consistent with a growth of the SW and
their upstream migration. There are approximations made in
this analysis. The front of the current is assumed to have
passed so that the SW is growing underneath the body of the
current. This analysis focuses on the structure of the basal
boundary layer and its interaction with the substrate. This is
in contrast to the analysis that will be carried out in this
paper that focuses on the nonlinear interaction between the
structure of the bulk flow and the substrate. They also use a
simplified model of the linear erosion without a threshold.
Finally, the expression used for the flow is an assumed per-
turbation that is linearly coupled to the substrate structure.
[10] We are motivated to eliminate the approximations

used in these studies, and to obtain a more complete under-
standing of what controls the character of the SW genera-
tion. We therefore study SW using a geometry and computer
simulation method that takes into account the non-linearity,
uses a realistic erosion model, and models the depth depen-
dant behavior in a nonlinearly self consistent and self
generating way. In our treatment we apply nonlinear simula-
tions based on the 2-D depth-dependent Navier-Stokes equa-
tions [Hartel et al., 2000; Necker et al., 2002; Blanchette
et al., 2005] with a realistic erosion relation [Garcia and
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Parker, 1993; Wright and Parker, 2004; Kostic and Parker,
2006]. The model includes the effects of poly-disperse parti-
cles in the current and in the substrate, and a sequence of
flows with a self consistent coupling to the substrate. An
obstacle on the slope is used to trigger the possible buildup
and possible growth of the SW. The flows are initiated from a
lock release.
[11] We study the character of the SW generation as a

function of four controlling parameters: (1) slope, (2) current
lock height, (3) grain lock concentration, and (4) particle
diameters. Three distinct phases of the SW generation are
observed. Regions of the controlling parameter space are
identified for each of the phases – the phase diagram. The
boundaries between these regions are directly related to the
self-sustainment of the flow. The first will be shown to be
related to the flow being depositional everywhere on the
slope, the second related to the flow being self sustaining
only over the downslope part of the obstacle, and the third
related to the flow being self sustaining everywhere. The
first condition results in no SW formation, the second in the
formation of a soliton like structure and the third with
growing SW. The soliton like structure [Ablowitz and Segur,
1984], is a relatively constant periodic profile that migrates
updip. This stable profile exists at the threshold between
deposition and self-sustainment. The similarity to the
buildup mode in a laser [Arecchi et al., 1989], led us to
calling it the SW buildup phase.
[12] The relationship of these solutions to the depth-

averaged models is studied by forming depth-averaged
variables from the detailed depth profiles. A periodic struc-
ture in the flow is noted. It is synchronized to the sediment
waves in the substrate. No such structure is seen in the
depth-averaged models. They have a very smooth character.
This is not surprising since they do not incorporate the
undulating structure. Similarly, including a diffusivity term
in the transverse direction in the momentum equation as in
Felix [2001] excludes the periodicity in the current velocity
or concentration profiles.
[13] In the following sections we will present the physical

model and numerical approach (section 2), followed by the
simulations results (section 3) and concluding remarks
(section 4).

2. Model Description

2.1. Governing Equations

[14] We consider a particle-laden turbidity current model
for which the particle concentration is relatively low (�1%)
and the density differences in the flow are sufficiently small.
Hence, the density variation appears only in the gravity term
(the Boussinesq approximation). We assume that the parti-
cles are small enough that the particle inertia can be ignored,
allowing the particles to move in trajectories independent
of the flow [Druzhinin, 1995]. The particles are transported
by the current and settle relative to the fluid in the direction
of the gravity vector. The system is assumed to be two-
dimensional with normalized variables: x = ~x /L0, y = ~y /L0,
and t = ~t /t0, where ~x and ~y are the un-normalized space
variables and ~t is the un-normalized time variable. Here,
a characteristic length scale, L0, is used and the time is nor-
malized as t0 = L0/ub. For the purpose of our study a value
of L0 = 250 m will be considered, giving a characteristic

SW wavelength of 350 m. The buoyancy velocity is defined
as

ub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R*c0gL0

p
; ð1Þ

where g is the gravity constant, c0 is the initial grain con-
centration in the lock, R* = (rp � rf)/rf is the fractional
density difference, rp is the grain particle density, and rf is
the fluid density. The concentration of grain type i, ~c i, is
normalized to give ci = ~c i/c0. The variable x is in the local
flow direction, y is in the perpendicular direction and q is
the local angle between the direction of gravity and the
negative y direction. In order to model complex topo-
graphies we use a spatially varying gravity vector with and
angle q [Blanchette et al., 2005, 2006]. A curvilinear
coordinate system is simulated with the second order curva-
tures being neglected. This approximation is valid for flow
heights smaller than the radius of curvature of the bottom
topography.
[15] The current equation, in normalized units, are written

in terms of the vorticity, w, and the stream function, y,

ux ¼ ∂y
∂y

; ð2Þ

uy ¼ � ∂y
∂x

; ð3Þ

w ¼ ∂uy
∂x

� ∂ux
∂y

; ð4Þ

where ux = ũx/ub and uy = ũy/ub are the normalized velocities.
These equations are consistent with the continuity equation

∂ux
∂x

þ ∂uy
∂y

¼ 0: ð5Þ

[16] The resulting current equations for w, y, and ci
are [Hartel et al., 2000; Necker et al., 2002; Blanchette
et al., 2005]

∂w
∂t

þ ~u ⋅rð Þw ¼ 1

Re
r2wþ ĝ �rcð Þz; ð6Þ

r2y ¼ �w; ð7Þ

∂ci
∂t

þ ~u þ usiĝð Þ ⋅rci ¼ 1

Pe
r2ci; ð8Þ

where c = ∑i ci is the normalized concentration of grains in
the current (initially c = 1), and ĝ ≡ (sin q, �cos q) is a unit
vector in the direction of gravity. Equation (6) is obtained
from the Navier-Stokes momentum equation and includes
the 2-D vorticity of the flow. Equation (7) is obtained from
equations (2)–(4). In these equations we have used the sys-
tem’s Reynolds number, Re = ubL0/n, where n is the fluid
viscosity. The Peclet number Pe = ScRe is related to the
Schmidt number, Sc = n/k, where k is the particle diffusion
constant. We assume that small scale unresolved flow
structure will affect the transport of particles in the same way
as the transport of the fluid, so we set Pe = Re or Sc = 1
[Hartel et al., 2000]. The settling velocity, ũsi, for grain
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type i is normalized to be usi = ũsi/ub. Note that the driving
force of the current, in equation (6), comes from the varia-
tion in the concentration c perpendicular to ĝ .
[17] We use the convention that the dependant and inde-

pendent variables of the PDEs (partial differential equations)
have tildes, if they have dimensions, and are dimensionless
without. Constants of the PDEs (such as Re) and constants
used to scale the variables (such as g, n, k, L0, t0, ub, and c0)
are always used without tildes to keep the notational com-
plexity to a minimum.
[18] The exchange of particles between the substrate and

the current is governed by an Exner type equation for the
substrate elevation h(x, t) in accordance with the sediment
transport rate [Parker et al., 2000; Pratson et al., 2001]

1� lp

� � ∂h
∂t

¼
X
i

Jsi � Jrið Þ; ð9Þ

where Jsi and Jri are the volume rate of deposition and
resuspension from the substrate surface for grain type i,
respectively. The sum in equation (9) is over all types of
grains, i, and lp is the average substrate porosity. Here h
is normalized by a length s0 = L0c0/(1 � lp), where lp is
the porosity. For typical values of L0 = 250 m, c0 = 0.8%, and
lp = 0.3, we obtain s0 = 2.9 m. The substrate is divided into
an upper and lower layer, where the upper layer is an active
layer (AL) with thickness La. Exchange of particles between
the substrate and the current takes place via this layer.
[19] We use, for the current, a rectangular computational

domain. At the boundary, we enforce a non-slip, no normal
flow condition, y = ∂y/∂y = 0, at the top and bottom
boundaries. We also impose a no normal flow condition at
the left and right walls so that y = ∂2y/∂x2 = 0. This allows
the use of fast Fourier transforms in the x direction for high
accuracy [Hartel et al., 2000; Blanchette et al., 2006].

2.2. Physical Mechanisms

2.2.1. Resuspension Term
[20] The exchange of particles between the current and the

substrate includes settling and resuspension contributions.
For grain type i the normalized exchange current, Ji, is

Ji ¼ Jsi � Jri ¼ usi �ĝycb � ɛsi
� �

; ð10Þ

where Jsi is the settling flux of grain type i with a settling
velocity, usi, such that

Jsi ¼ �usiĝ ycb; ð11Þ

with cb being normalized grain volume concentration close
to the bottom of the current and ĝ y = �cos q. The resus-
pension current of grains of type i is

Jri ¼ usiɛsi; ð12Þ

where ɛsi is the normalized resuspension volume. From their
laboratory experiments, Garcia and Parker [1993] derived
the resuspension relation

ɛsi ¼ a

c0

z5i
1þ a

0:3 z
5
i

fri; ð13Þ

where fri is a resuspension factor equal to the relative pres-
ence of grain type i in the active layer at the substrate sur-
face. The factor a in equation (13) for field scale can be
increased by a factor of 6 [Wright and Parker, 2004], but
can also be reduced by a similar factor due to sediment
strength – the entrainment limiter [Kostic and Parker, 2006;
Fildani et al., 2006]. For simplicity, we use the older value
a = 1.3 � 10�7 [Garcia and Parker, 1993] in our calcula-
tion. The expression for zi is

zi ¼ a1
u*
usi

Ra2
pi ; ð14Þ

where Rpi is the particle Reynolds number,

Rpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
R*gdi

q di
n
; ð15Þ

di is the diameter of grain type i, and u* = ũ*/ub is the nor-
malized shear velocity at the boundary which can be written
in normalized variables as [Blanchette et al., 2005]

u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Re

∂ux
∂y

s
: ð16Þ

[21] We use values for a1 and a2 from experiments by
Garcia and Parker [1993]

a1;a2ð Þ ¼ 1; 0:6ð Þ Rp > 2:36
0:586; 1:23ð Þ Rp ≤ 2:36

:

�
ð17Þ

In equation (14), for the geophysical field currents, a slope
dependence term q0.08 of order unity is ignored [Kostic and
Parker, 2006]. Equation (13) has a high power in zi and
therefore behaves as a threshold relation for the resuspension
as a function of (u*/usi)

5.
2.2.2. Active Layer
[22] We apply an active layer (AL) in the substrate surface

from which resuspension can take place. Its dimension
depends on the resuspension strength [Parker et al., 2000].
The AL can have a very large range in depth, from the size
of a few grains, in the case of turbidity currents, to the size of
the width of the flow, in the case of fluvial flows. We
assume that the flow can mix the particles in the AL, gen-
erating a uniform distribution of all grain types in this layer.
[23] The mixing mechanism in the AL can be due to grain

traction or small scale topographic variations of the substrate
surface. For example, small scale dunes can accumulate
coarse grains in the local minima and fine grains in local
maxima. The AL width would be the long range average
distance of these local maxima and minima [Parker et al.,
2000]. All the grains in the AL are available for resuspen-
sion by interaction with the current turbulence. Resuspen-
sion causes a decrease in the upper boundary height of the
substrate and for a given AL width, deeper parts of the
substrate can now be included in the AL. Deposition
increases the substrate height so that deeper parts of the
substrate must now be excluded from the AL. We include in
the computation an AL model capable of handling very
small, La ≪ 1, and very large, La ≫ 1, active layers.
[24] In our simulations, we divide the substrate into zones

of size Ds perpendicular to the substrate surface, where the
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upper zone may be partially filled. Typically zones are Ds ≈
0.1 in normalized units. The AL can be very large and
include many zones, or can be very small and encompass
just a fraction of a single zone. The upper boundary of the
substrate is the upper boundary of the AL. The lower
boundary of the AL is obtained by subtracting the AL width,
La, from the upper boundary. The lower boundary can be in
the same zone as the upper boundary or in a much lower
zone. Every time step, we sum over the resuspension and
deposition mass, obtain the new upper level of the substrate,
and define the AL range. A mixing process is then applied to
the AL to make the grain type distribution uniform from the
bottom to the top of the AL.
[25] Armoring happens when fine grains can be resus-

pended, while coarse are being deposited by the flow. This
will leave an AL made up of only coarse grains which will not
be able to be resuspended. This turns off the resuspension,
changing the flow into a purely depositional one. The result
is a dissipating current and reduction in the front velocity.
2.2.3. Settling Velocity
[26] The settling velocity, ũsi, for grain type i is obtained

by using the relationship from Dietrich [1982]

~usi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R*gnWi

3
p

; ð18Þ

where

log10Wi ¼ �3:76715þ 1:92944 A� 0:09815 A2

� 0:00575 A3 þ 0:00056 A4; ð19Þ

A = 2 log10 Rpi, and the particle Reynolds number, Rpi is
defined by equation (15). The normalized settling velocities,
usi = ũsi/ub, depends on the input parameters of the particles.
Here, Rpi can be identified as the normalized version of the
particle diameter, di.
2.2.4. Shear Factor
[27] In 3-D simulations, high Re turbulence motion gen-

erates a shear layer at the bottom of the flow. This layer
affects the shear velocity close to the boundary. In 2-D, there
is no local turbulence and the shear velocity needs to be
evaluated in away that is consistent with experiments. To
define an appropriate shear velocity, a shear factor is intro-
duced. It is similar to the parameter in other models called
the bed resistance coefficient or the bottom drag coefficient,
CD [Parker et al., 1986]. The shear factor, fshr, is used to
obtain the appropriate shear velocity, u*, to avoid unrealistic
resuspension in the simulations. We include in equation (16)
a shear factor, fshr, such that

u2* ¼ wb

fshrRe
; ð20Þ

where wb is the vorticity close to the bottom, Re is the
Reynolds number, and equation (4) has been used. The shear
friction force at the bottom of the flow is proportional to u*

2.
Other models such the k – ɛ turbulence model [Felix, 2001;
Choi and Garcia, 2002; Huang et al., 2000] and the depth-
averaged model [Parker et al., 1986] do not have a shear
factor. Instead, they have CD. We will show that there is a
simple relationship between our shear factor, fshr, and CD.
Therefore, our treatment of the turbulence with a shear factor
is directly related to these alternative treatments.

[28] The equivalent parameter in the other models is
defined as

CD ≡
u*
vb

� 	2

; ð21Þ

where vb is the flow velocity at the grid closest to the bottom
current. The relation between vb and wb is

wb ¼ ∂ux
∂y

� 	
b

¼ vb
Dy

; ð22Þ

where Dy is the zone height, and ux = 0 at the bottom.
[29] In the k – ɛ turbulence model Felix [2001] and Choi

and Garcia [2002] use equation (21) to obtain the u* used
in the resuspension relation and approximate CD by

CD ¼ 1

k
ln Ezb=z0ð Þ

� 	�2

; ð23Þ

where k = 0.4 is the von Karman constant, E is the rough-
ness parameter (which varies between 9 to 30 going from
smooth to rough walls), zb is the height of the lowest
grid cell, z0 is the roughness height (for a smooth bottom
z0 = n/u*), and n is the fluid viscosity. For our case with a
scale length of 250 m, 64 zones per unit (that is zb = 3.9 m),
E = 10, and z0 = 10�3 m, we get CD = 1.4 � 10�3. Felix
[2001] using equation (23) obtains CD = 2.5 � 10�3.
Garcia and Parker [1993] predict that for currents with
Reynolds numbers Re ≈ 103 to 105, CD ≈ 0.1 to 10�3.
[30] Parker et al. [1986] depth averaged model used three

transverse average equations (for height, h, velocity, U, and
concentration, C) and used equation (21) as a closure con-
dition with CD = 4 � 10�3. They also extended the model to
four equations, adding an equation for the turbulence energy,
k. Assuming that CD = ak with a = 0.1, they found that CD

varied in the range of approximately 0.1 to 10�3.
[31] For our case, we evaluate CD using equations (20)–

(22) and obtain

CD ¼ 1

fshrReDyvb
: ð24Þ

Substituting our simulation parameters (Re = 103, fshr =
38, Dy = 1/64, and vb = 0.1) into this equation we get CD =
1.7 � 10�2.
[32] For our simulations, we evaluated equation (21) over

a wide range of locations, x, and times, t. We found that CD

varies between about 0.1 to 10�3. We therefore conclude
that fshr used in our model produces resuspension though a
u* similar to the resuspension obtained in the previous
models using CD.

2.3. Numerical Approach

[33] The numerical methods used to solve the current
equations (6)–(8) are based on Lele [1992], Hartel et al.
[2000], and Blanchette et al. [2005]. We perform a Fourier
transform on y in the x direction and use a sixth-order finite
difference scheme for the derivatives in the y-direction,
except near the boundaries where the derivatives are accu-
rate to third order. A third-order Runge-Kutta integrator is
used to propagate the solution in time. A finite difference
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time integrator is applied to equation (9) to update the sub-
strate particle budget, and an AL scheme is applied in the
determination of the balance between erosion and deposi-
tion. The finite difference time integrator is implemented

by replacing ∂h/∂t by h tþDtð Þ�h tð Þ
Dt . An adaptive time step is

used which satisfies the Courant-Friedrichs-Levy condition
to minimize the computation time. A typical time step is
at Dt ≈ 0.01. For a typical length scale L0 = 250 m
and buoyancy velocity ub = 5 m/s, we get a timescale of
t0 = L0/ub = 50 s. The length scale, L0 = 250 m, is selected to
obtain simulated SW consistent with the field observation
of SW wavelength, l = 350 m.
[34] Typically, the fluid equations are solved over a rect-

angular domain (�4 ≤ x ≤ 23 and 0 ≤ y ≤ 3) divided into
513 and 193 grid cells, respectively. When the number of
grid cells in the x and the y directions were doubled there
was no change in the results. We therefore conclude that
the results have converged and this resolution is sufficient.
An additional rectangular grid is used for the substrate at
the same x locations and over a range, in the perpendi-
cular direction, of 0 < s < 20, where the distance is scaled by
s0 = L0c0/(1 � lp) with a porosity of lp = 0.3. The substrate
is divided into 513 and 601 grid cells in the x and s direc-
tions, respectively. An AL is applied of height La = 0.02.
Changing La by a factor of 2 has a small effect on the results.
[35] A lock release is simulated where the fluid is initially

located at rest in a typical range of �4 ≤ x ≤ 0 and 0 ≤ y ≤
1.5, with a fluid height of y = 3. We consider a lock of
4 units wide and 1.5 units in height. For a scale length of
L0 = 250 m this is a reservoir 1 km long and 375 m high,
which gives an episodic geophysical turbidity current extend-
ing for many kilometers. To obtain a sustained current of
much longer time a different boundary condition for the flow
needs to be considered – a steady state inflow to the system.
This boundary condition is not included in the present study.
[36] It was shown by Blanchette et al. [2005] that the

effect of the upper fluid boundary can be neglected if it is at
least twice the height of the lock release, that is it can be
considered a deepwater case. For numerical stability the initial
lock particle concentration profile and the substrate bottom
topography is smoothed over a few grid points (typically 6).
The typical initial volume concentration is c0 = 0.8%.
[37] The value of Reynolds numbers, Re = ubL0/n, for

geological turbidity currents with ub in the range of 1 m/s to
5 m/s, scale lengths, L0, in the range of 1 m to 250 m, and a
water viscosity of n = 10�6 m2/s, are in the range 106 to
1010. These Reynolds numbers are well beyond the reach of
numerical simulation. As Re increases, smaller scales must
be resolved, which also implies smaller time steps as well as
more grid cells. All the simulations are done in 2-D for a
relatively low Reynolds number Re = 1000. In this case, the
vortex structure of the flow is not as fully developed as for
high Re. It is found, that in 2-D, the front velocity and the
front shape is almost independent of Re [Hartel et al., 2000;
Necker et al., 2002; Blanchette et al., 2005]. There is a self-
consistent coupling between the flow and the substrate. For
many sequential flows, the affect of the substrate from the
accumulated SW can have a large imprint on the current
profile. This can cause the flow profile to adapt itself to the
undulating substrate, even for high Re. We expect that the
simulation of many consecutive flows, with Re = 1000, will

qualitatively include this feature of high Re. To make the
flow more realistic, we include a shear velocity that is con-
sistent with field observations by introducing a shear factor,
equation (20) consistent with the bed drag coefficient
applied by others, equation (21). Three movies, one for each
phase corresponding to the three substrate profiles shown in
Figure 5, can be found in the auxiliary material.1

[38] To obtain physical resuspension, we use a shear factor
of fshr = 38. The eroded particles are spread uniformly in a
region close to the substrate, typically over a thickness of
0.15. Changing the spreading range by 20% only has a small
effect on the results. When the resuspension is high, the
particles injected over this range are rapidly transported
further by the flow to distances much greater than the initial
injection range. This leads to the small sensitivity to the
initial injection range. In contrast, depth-averaged models
the injected particles are spread over the transverse layer.
[39] Five types of grains are simulated with diameters that

range from 300 mm to 1000 mm. The number of flows
simulated are typically 120. A typical runtime on an 8 core
(dual quad core Xeon E5462, 2.68 GHz) machine is 20 hours.
The program is restartable.

2.4. Transverse Average Current Variables

[40] To study the current structure and compare it to pre-
vious work, we depth average the transverse current profiles
in the y-direction as a function of x. In the appendix of the
paper by Parker et al. [1986], they write the depth-averaged
variables for the velocity, U, height, h, and concentration, C,
in terms of the local velocity, ux as

U h ¼
Z yl

0
uxdy ¼ a1; ð25Þ

U2 h ¼
Z yl

0
u2xdy ¼ a2; ð26Þ

and

U C h ¼
Z yl

0
ux cdy ¼ a3; ð27Þ

where y is the transverse coordinate, ux is the velocity in the
longitudinal x-direction, and c is the normalized concentra-
tion. Here, yl defines the range in the y-direction of appre-
ciable concentration in the current, c > cl [Middleton, 1993].
We use a value of cl = 3/4, relative to the initial concentra-
tion of 1. The transverse layer average values for U, h,
C obtained from equations (25)–(27) are

U ¼ a2
a1

; ð28Þ

h ¼ a21
a2

; ð29Þ

and

C ¼ a3
a1

: ð30Þ

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JC007539.
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[41] Averaging the simulation profiles of ux with
equations (25)–(27), the transverse average variables U, h,
and C are obtained by using equations (28)–(30).
[42] The depth-average variables are used to calculate the

local Richardson number

Ri ¼ 1

F2
r

¼ R*gCh

U2
; ð31Þ

where Fr is the local Froude number. We define F2 as

F2 ≡
1

Ri
� 1: ð32Þ

The square of the Froude number is proportional to U2/h and
indicates the ratio of the kinetic energy of the flow to the
potential energy of the fluid. For Ri < 1, Fr > 1, or F2 > 0 the
local current is supercritical, that is the kinetic energy of the

flow is greater than the potential energy of the fluid. It is
usually assumed [Parker et al., 1986] that a supercritical
flow is predominately erosional and that a subcritical flow,
F2 < 0, is predominately depositional.
[43] Even though the depth-averaged variables only show

the characteristics of the envelope of the current, we will
find that the undulating structure has an imprint on the
average velocity, U, and average height, h. There are peri-
odic structures on these variables correlated with both the
sediment waves and undulating structure of the current.
A convergence of the flow toward the substrate reduces
h and increases U causing a peak in F2. This peak correlates
with a peak in the shear velocity, u*, and with a resulting
increase in resuspension. In the next section we will present
the depth average variables U(x), C(x), and h(x), obtained
from the detailed current profile, as functions of the location
x. We will also present the local Froude number dependance
as F2(x) (remember that F2 > 0 indicates supercritical flow
locally and F2 < 0 indicates locally subcritical flow), and the
local u*

5(x) (indicating the local shear velocity dependance
of the resuspension, see equations (13) and (14)).

3. Simulation Results for Sediment
Wave Generation

3.1. Effect of an Obstacle

[44] We simulated multiple lock release flows down a 2-D
“channel” in the x-y plane of dimension �4 < x < 23 and
slope q0 = 1.5�, where the scale length for x and y is L0 =
250 m. The flow and the substrate initially include 5 types of
grains equally distributed with diameters of {di} = {300,
400, 500, 600, 700} mm. This corresponds to particle
Reynolds numbers, Rpi, that range from 20 to 71. The sus-
pension in the lock is located in the area where �4 < x < 0,
0 < y < H, and H = 1.5. The water boundary is at y = 3,
which is large enough to cause little coupling of the flow to
the water boundary—a deepwater flow. The initial particle
concentration in the lock is c0 = 0.8%. An obstacle of tri-
angular shape with rounded corners is located along the
channel at {xi} = {4, 6, 8} = {start, top, end} with an angle
of �2� on the upstream side and 5� on the downstream
side. The current is absorbed exponentially as a function of
time at the end of the channel in the range of x = 19 to 23.
First the resuspension is turned off exponentially in the
range of x = 19 to 20, later the concentration is reduced
exponentially in the range of x = 20 to 23. The exponential
decay factor used is 5. The initial substrate and obstacle
structure is presented (in real units) in Figure 1a.
[45] Figure 1 presents the substrate structure and the

development of the sediment wave along the channel in the
x-y plane for up to 120 sequential flows. Each flow has been
completed before the next is started. The substrate is colored
according to the average grain diameter over the range of
450 mm to 600 mm. Considering the particle diameter dis-
tribution in the substrate, by examining its width or variance,
we find similar behavior. For the fifth flow, f = 5, there is
deposition before the obstacle crest and erosion after the
crest. The extra erosion downstream generates the next break
(increase) in slope and starts the next crest in the down-
stream direction. For f = 10 and f = 20 a train of breaks
(increase) in slope develop seeding the SW structure. Every
SW crest moves upstream due the current deposition on the

Figure 1. Development of sediment waves on the sub-
strate. The x-y image is colored according to the average
grain diameter. The color bar is a rainbow, starting from
450 mm at blue and ending at 600 mm at red. The profiles
are shown after: (a) 1, (b) 5, (c) 10, (d) 20, (e) 40, (f) 80,
and (g) 120 flows. The initial slope is q0 = 1.5�, and the
flows include 5 types of grains with diameters that range
from 300 mm to 700 mm (Rpi = 20 to 71). Initially there is
an obstacle between x values of 1000 m and 2000 m with
a peak at 1500 m (in normalized units: 4, 8, and 6). The
upstream slope of the obstacle is �2�, and the downstream
slope is 5�. The lock is between �1000 m and 0 m (�4 <
x < 0) with an initial height of 375 m (H = 1.5) and particle
concentration of c0 = 0.8%.
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upstream side of the crest and the erosion on the downstream
side. By f = 40 a well developed SW train is formed, prop-
agating downstream by the seeding of new breaks in slope,
and migrating upstream by the structured erosion and
deposition. By f = 80 and f = 120 the upstream SW are
effected by erosion close to the lock boundary. The down-
stream part of the SW starts to be affected by the change in
slope due to current reflection and deposition at the right
boundary. Increasing the channel length extends the range of
the SW downstream, but does not effect the general structure
of the flows that we will analyze. In the figures presenting
the development of SW in the substrate, as in Figure 1, we
consider the color map of the average grain size diameter.
[46] Figure 2 presents contours of the current’s particle

concentration in the x-y plane at the normalized time, t = 8,
for flow, f = 20. The current head has already passed over the
obstacle. The timescale is t0 = L0/ub = 46 s, the length scale
is L0 = 250 m, the buoyancy velocity is ub =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gR*c0L0

p
=

5.42 m/s, g = 9.81 m/s2, and the particle density change is
R* = 1.5. The image colors are the particle volume concen-
tration in the range of 0 to 1.5%. Also shown in Figure 2 are
the transverse average variables as a function of x: the cur-
rent velocity U(x) in blue, the concentration C(x) in white,
the current height h(x) in green, the change in the Froude
number F2(x) = Fr

2 � 1 = 1/Ri � 1 in red, and the shear
velocity term in the resuspension expression Vshr

5 in yellow.
Note that SW periodicity in the substrate is coupled into the
current and appears as an undulating structure in the current
and as a periodicity in the transversely averaged variables.
The generated undulating structures are mainly seen at
the top part of the flow. Characteristic values for the flow are
U ≈ 4.5 m/s, C ≈ 1.5% (twice its initial value), and h ≈ 60 m.
The Froude number is greater than 1 for a large part of the
flow (supercritical) and the flow is highly erosive. Note that
the amount erosion is not well correlated with the degree of

supercriticality. There is also an exponential growth in the
erosion as one goes from the head to the tail of the flow,
while the change is the Froude number is relatively constant.
The wavelength of the SW is consistent with the Normark
et al. [1980] relation, l = 2ph, where l = 380 m for
h = 60 m.
[47] One limitation of the computational model is that the

radius of curvature Rt of the bottom topography should be
larger than the current height, h. Here Rt = pxt/2qt and qt =
2ht/xt is the curvature angle, where xt is the curvature length
and ht is the topography height. For a SW substrate xt ≈ l/2,
where l is the wavelength of the SW and ht is the SW
topography height (difference between maxima and minima
height). Typically, in normalized units with L0 = 250 m, l ≈
1.5. After 80 flows, we get ht ≈ 0.12 and Rt = 3.7, which is
larger than a typical current height, h = 0.4, and even larger
than the flow domain height, H0 = 3.
[48] Figure 3 shows the total mass in the flow, m(t), and its

front position, xtip(t), as a function of time for flows {f} =
{1, 20, 40, 80, 120}. For flows 1 and 20, there is an increase
in the total mass, because of resuspension, by almost a factor
of 2. The current asymptotes to a speed of about 4.5 m/s. The
resuspension maintains the current motion and redistributes
the substrate mass to form the growing SW. For later flows
(40, 80, and 120), the substrate slope is reduced by deposi-
tion at the end of the channel. Consequently, the resuspen-
sion and the growth of the SW are reduced, keeping the

Figure 2. Particle volume concentration of the flow in the
x-y plane at the normalized time, t = 8, for flow, f = 20 (time-
scale is t0 = L0/ub = 46 s, buoyancy velocity is ub =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gR*c0L0

p
= 5.42 m/s, particle density change relative to

water is R* = 1.5, and initial particle concentration is c0 =
0.8%). This corresponds to Figure 1d. The color bar is a
rainbow, starting from 0 at blue and ending at 1.5% at red.
Also shown are the depth averaged current variables: (blue)
velocity U � 100 in m/s, (white) concentration C � 2 � 104,
(green) current height h in m, (red) change in Froude number
F2 � 200, and (yellow) shear velocity term in the resuspen-
sion Vshr

5 � 5 � 106 in (m/s)5. All quantities plotted have SI
dimensions.

Figure 3. (a) Normalized suspended mass in flow as a
function of time, m(t)/m0, for flows: (black) 1, (red) 20,
(blue) 40, (cyan) 80, and (magenta) 120. Time is plotted in
normalized units (the scale for time is t0 = 46 s). (b) Front
position as a function of time, xtip(t), for flows: (black) 1
and (magenta) 120. The front velocity is reduced from 0.90
for flow 1, to 0.73 for flow 120. In dimensional units, these
are velocities of 4.9 m/s and 3.9 m/s (ub = 5.42 m/s).
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mass in the flow constant and changing only the sediment
wave structure.
[49] Figure 4 shows the result of reducing the obstacle

height and width by a factor of 2, located at {xi} = {4, 5, 6}
with angles {qi} = {�2�, 5�}. All other parameters are the same
as the previous simulation. Reducing the obstacle size has only
a small effect on the growing SW. Comparing Figure 4 to
Figure 1 for flow 80, we find a very similar SW development.
The obstacle’s function is to trigger the probable growing
wavelength. By flow 10, the obstacle is eroded leaving the
system to develop SW independent of the initial condition.

3.2. Influence of Lock Height

[50] We now present a series of systematic parameter
studies over the next three subsections of the paper. We start
with examining the influence of lock height, H, on the
character of the flow and SW formation. The lock height is
directly related to the size of the flow. Three characteristic
lock heights (0.5, 1.0, and 1.5) are simulated for the reduced
obstacle system displayed in Figure 4. The results are shown
in Figures 5–7. The slope angle was also changed for each of
the cases to 0.5�, 0.5� and 1.5�, respectively. This was done
to access the three different phases of SW development.
[51] Previous studies [Blanchette et al., 2005] found little

dependence on the aspect ratio of the flow, W/H. When we
doubled the width of the flow from 4 to 8 units, keeping the
total mass, WH, constant, we found little change in the
sediment wave structure. Specifically, there was not a sig-
nificant change in the wavelength. Therefore, systematically
changing the lock height, H, is a surrogate for changing the
total mass, WH.

[52] For the first case (Figure 5a), there was no sediment
wave formation. We call this the “no SW” phase. It is
characterized by a final uniform slope topography. As more
flows are deposited the obstacle is removed from the
topography. Further characteristics of this phase can be seen
in Figures 6a and 7. Figure 6 shows the profile of the particle
concentration in flow and the depth averaged current vari-
ables in the same manner as Figure 2. The time evolution of
the suspended mass in the flow, m(t), and the front position,
xtip(t), are shown in Figure 7 in the same manner as Figure 3.
Note the simple structure to the flow in Figure 6a. The
flow is divided into the head with an elevated velocity and
concentration. It is modestly supercritical as evidenced by
F2. The head is followed by a subcritical body. There is
no appreciable erosion as evidenced by the small values of
Vshr
5 . There is little structure within these two parts of the

flow. Figure 7 shows a monotonically decreasing mass and
a reduced front velocity of 0.42 in normalized units and
2.3 m/s in dimensional units. An important thing to note
about this phase is that the initial substrate is at no point
steep enough in slope to support self sustainment according
to the criterion presented in Blanchette et al. [2005]. This
criterion gives the critical angle, qc, for self sustainment as a
function of c0, H, and d. The characteristics of the deposited
beds shown in Figure 5a, are quite simple. Even though
there have been many flows there appears to be one massive
bed that becomes gradually more fine grained downslope
and gradually more coarse grained going from the bottom
to the top of this massive bed.
[53] The second phase is demonstrated in Figures 5b, 6b,

and 7. We call this phase “SW buildup”. This phase is
characterized by the obstacle being reorganized by the early
flows into a stable self-consistent profile that neither grows

Figure 4. Development of sediment waves on the substrate
with a reduced size obstacle (by a factor of 2). Initially there
is an obstacle between x values of 1000 m and 1500 m with a
peak at 1250 m (in normalized units: 4, 6, and 5). The
upstream slope of the obstacle is �2�, and the downstream
slope is 5�. The x-y image is colored according to the aver-
age grain diameter. The color bar is a rainbow, starting from
450 mm at blue and ending at 600 mm at red. The profiles are
shown after: (a) 1, (b) 10, (c) 40, and (d) 80 flows. Other
than the size of the obstacle, all parameter are identical to
the simulations shown in Figures 1 to 3.

Figure 5. Development of SW on a substrate after 80
flows, to study the effect of the initial height, H. The x-y
image is colored according to the average grain diameter.
The initial obstacle has the reduced height shown in Figure 4.
The color bar is a rainbow, starting from 450 mm at blue and
ending at 600 mm at red. The profiles are shown for: (a) “no
SW,” H = 0.5, q0 = 0.5�; (b) “SW buildup,” H = 1.0,
q0 = 0.5�; and (c) “SW growth,” H = 1.5, q0 = 1.5�.
Auxiliary material consists of three movies of the substrate
evolution leading to these three substrate profiles. Auxiliary
material consists of three movies of the substrate evolution
leading to these three substrate profiles.
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or decays with additional flows. It should be noted that the
initial substrate profile is only steep enough on the down-
stream side of the obstacle to support self sustainment.
We recognize that this profile is maintained on the boundary
of SW growth where the resuspension leading to growth is
balanced by the deposition favoring decay. Because of this
and the invariant profile that we call this phase soliton like.
In addition, it is very similar to the buildup mode in a laser.
In a buildup mode, random perturbations in the laser cavity
are self organized into a persistent organized mode in the
laser cavity. This is the reason for the name of this phase.
Further characteristics of this phase are shown in Figure 6b.
The flow is now modestly supercritical over most of its
evolution as evidenced by the F2 profile. It also shows
structure in the velocity, concentration, and especially F2

that is synchronized to the SW structure. There is still no
appreciable erosion as evidenced by Vshr

5 . Figure 7 shows
that m(t) has a maximum and remains near the initial mass.
The front velocity of 0.66, 3.6 m/s in dimensional units, is

not elevated or reduced. The characteristics of the deposited
beds shown in Figure 5b, display a bit more structure than
the previous phase. There still do not appear to be distinct
beds associated with each flow. Instead there is a massive
bed with gradually changing characteristics. It becomes
more fine grained downslope. Vertically it shows more
character that the previous phase. It gradually oscillates from
bottom to top. The resulting profile has stripes of coarse
grained deposits dipping down in the downslope direction.
[54] The third phase is demonstrated in Figures 5c, 6c,

and 7. We call this phase “SW growth”. This phase is
characterized by a SW that initially grows exponentially. It
is seeded from the obstacle generating a sequence of SW
crests in the downstream direction. The wave then migrates
slowly upstream. The obstacle is removed from the substrate
by the early flows and the subsequent evolution has no
memory of the initial obstacle. It should be noted that the
initial substrate profile is always steep enough to support self
sustainment. Further characteristics of this phase are shown
in Figure 6c. The flow is significantly supercritical over the
body and is marginally supercritical near the head as
evidenced by the F2 profile. It shows structure in the
velocity, concentration, F2, and erosion parameter, Vshr

5 that
is synchronized to the SW structure. A distinguishing char-
acteristic of this phase is the appreciable erosion evidenced

Figure 6. Particle volume concentration of the flow in the
x-y plane at the normalized time, t = 8, for flow, f = 15, to
study the effect of the initial height, H. This corresponds to
simulations of Figure 5. The color bar is a rainbow, starting
from 0 at blue and ending at 1.5% at red. Also shown are the
depth averaged current variables: (blue) velocity U � 100 in
m/s, (white) concentration C � 2 � 104, (green) current
height h in m, (red) change in Froude number F2 � 200,
and (yellow) shear velocity term in the resuspension Vshr

5 �
5 � 106 in (m/s)5. All quantities plotted have SI dimensions.
The profiles are shown for: (a) “no SW,” H = 0.5, q = 0.5�;
(b) “SW buildup,” H = 1.0, q = 0.5�; and (c) “SW growth,”
H = 1.5, q = 1.5�.

Figure 7. To study the effect of the initial height, H.
(a) Normalized suspended mass in flow as a function of
time, m(t)/m0, for the same simulations as Figure 5 and 6:
(red) “no SW,” H = 0.5, q = 0.5�; (black) “SW buildup,”
H = 1.0, q = 0.5�; and (blue) “SW growth,” H = 1.5, q =
1.5�. Time is plotted in normalized units (the scale for time
is t0 = 46 s). (b) Front position as a function of time, xtip(t).
The front velocity is reduced to 0.42 for “no SW,” main-
tained at 0.66 for “SW buildup,” and increased to 0.87 for
“SW growth”. In dimensional units, these are velocities of
2.3 m/s, 3.6 m/s, and 4.7 m/s.
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by the Vshr
5 profile. It also shows a exponentially growing

(from head to tail) wave structure that is synchronized to the
SW structure. Figure 7 shows that m(t) is monotonically
increasing and approaches an asymptote that is about twice
the initial mass. The front velocity of 0.87, 4.7 m/s in
dimensional units, is elevated. The characteristics of the
deposited beds shown in Figure 5c, are quite complex. There
are distinct beds for each flow. There is an overprint of a
complex structure as the SW migrate upstream and erode
into the substrate.
[55] We examine the flow properties and their link to the

three phases of SW formation in Figure 8. The shear
velocity, Vshr, bottom topography, and the change in the
bottom topography between consecutive flows are shown as
a function of x (at normalized time t = 8). For the “no SW”
phase shown in Figure 8a, the shear velocity is almost flat,
the bottom topography has no undulating structure, and the
change in topography between consecutive flows is very
small. For the “SW buildup” phase shown in Figure 8b, the
shear velocity has some structure following the variation in
the topography, the bottom topography shows an undulating
structure around the original obstacle, and the change in
topography is very modest. For the “SW growth” phase
shown in Figure 8c, the shear velocity is following the SW
structure with larger values down slope and smaller values

up slope, the bottom topography has an extended undulating
structure, and the change in topography is oscillating
between positive to negative values following the undulating
structure of the shear velocity. The maxima of the change in
topography is where the shear velocity a minima leading to
maximum deposition. The minima of the change in topogra-
phy is where the shear velocity is a maxima leading to max-
imum erosion. The relationship between the shear velocity
and the bottom topography leads to erosion on the down slope
and deposition on the upslope. This causes the SW to migrate
up flow. The stream function and streamlines were also
studied. No flow separation on the lee side of the SW was
ever observed as predicted by Kennedy [1963] for Lee waves.
[56] The picture of these phases is completed by a much

larger set of simulations that were done over a large range of
lock height, H, and slope angle, q0. For each of the simula-
tions the flow was classified by what phase of SW developed
(“no SW,” “SW buildup,” or “SW growth”). The results are
displayed in Figure 9. This figure divides the H-q0 plane into
three regions depending on the phase of the SW. The three
exemplars shown in the previous three simulations are indi-
cated as the black points on this figure. As H increases, q0 can
be reduced and still maintain the SW phase. You can now see
why we had to increase the angle, as well as the initial flow
height, to have the third case be in the “SW growth” phase.
This figure is a cut through the phase space at constant initial
particle concentration, c0, and particle size, {di}. The behavior
of the phase diagram with these remaining two variables will
be explored in the next two subsections. Three movies, one
for each phase corresponding to the three substrate profiles
shown in Figure 5, can be found in the auxiliary material.
[57] Before we proceed, we examine the “SW buildup”

phase in a bit more detail. We described this phase as being
soiliton like. A soliton is a wave with an invariant profile
except that it moves at a constant velocity. Figure 10 shows
this characteristic of the case shown in Figure 5b. Figure 10a
shows the 5 profiles of the surface after flows 40 to 80. The
profile is constant except for a lateral shift. The amount
of that shift as a function of the flow is shown in Figure 10b.
It displays a constant velocity of 2.3 m/flow.

Figure 8. Flow properties and their link to the three phases
of SW formation. Shown are: (red) shear velocity Vshr � 500
in m/s, (blue) bottom topography y in m, and (green) change
in bottom topography Dy � 20 in m between consecutive
flows. The profiles as a function of x in m are shown for:
(a) “no SW,” f = 60, H = 0.5, q0 = 0.5�; (b) “SW buildup,”
f = 60, H = 1.0, q0 = 0.5�; and (c) “SW growth,” f = 20,
H = 1.5, q0 = 1.5�.

Figure 9. Phase diagram for SW in the H-q0 plane, where
H is the initial lock height in normalized units and q0 is the
initial slope of the substrate. The three regions are identified
according to the phase of the SW: (red) “no SW,” (yellow)
“SW buildup,” and (green) “SW growth”. The points simu-
lated in Figures 5 to 7 are plotted as black dots and labeled
(a, b, and c) consistent with those figures.
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3.3. Effect of Particle Concentration

[58] We now move onto a study of the effect of initial lock
concentration, c0, on the development of the SW. With
respect to the previous section, we fix the current height at

H = 1.5 and study the dependance of the SW development
on both c0 and the slope angle, q0. It should be noted that
changing c0 has a direct effect on the system’s timescale
through t0 = L0/ub, where the buoyancy velocity is ub =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gR*c0L0
p

. In Figure 11 the substrate structure after 80
flows is shown for three different cases, each representative
of one of the phases found in the previous section. This
figure is analogous to Figure 5 of the previous section.
[59] A much larger set of simulations is used to define

the three regions corresponding to the phases of the SW, in a
c0-q0 plane (where the initial lock height, H, and particle
size, {di} are constants). This phase diagram is shown in
Figure 12, and is analogous to Figure 9 of the previous
section. Two lines divide this plane into areas of “no SW,”
“SW buildup,” and “SW growth”. As c0 increases q0 can be
reduced and still maintain the SW phase. The three exem-
plars shown in Figure 11 are indicated as black points on
this figure.

Figure 10. Soliton like behavior of the “SW buildup”
phase shown in Figure 5b. (a) Profiles of the surface after
flows 40 to 80. (b) Lateral shift of the constant profile as
a function of the flow. It displays a constant velocity of
2.3 m/flow.

Figure 11. Development of SW on a substrate after 80
flows, to study the effect of the particle concentration, c0.
The x-y image is colored according to the average grain
diameter. The initial obstacle has the reduced height shown
in Figure 4. The color bar is a rainbow, starting from
450 mm at blue and ending at 600 mm at red. The profiles
are shown for: (a) “no SW,” c0 = 0.4%, q0 = 0.5�; (b) “SW
buildup,” c0 = 0.6%, q0 = 1.0�; and (c) “SW growth,” c0 =
1.2%, q0 = 1.5�.

Figure 12. Phase diagram for SW in the c0-q0 plane, where
c0 is the initial particle concentration and q0 is the initial
slope of the substrate. The three regions are identified
according to the phase of the SW: (red) “no SW,” (yellow)
“SW buildup,” and (green) “SW growth”. The points simu-
lated in Figure 11 are plotted as black dots and labeled
(a, b, and c) consistent with that figure.

Figure 13. Development of SW on a substrate after 80
flows, to study the effect of the particle concentration, c0,
on the wavelength of the SW, l. The x-y image is colored
according to the average grain diameter. The initial obstacle
has the reduced height shown in Figure 4. The color bar is a
rainbow, starting from 450 mm at blue and ending at 600 mm
at red. The profiles are shown for: (a) c0 = 0.6%, q0 = 2.0�,
where l = 430 m and (b) c0 = 1.2%, q0 = 1.5�, where l =
310 m.
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[60] A closer look is taken at the dependance of the SW
wavelength, l, by studying two “SW growth” cases with
different values of c0. These cases have c0 values of 0.6%
and 1.2%, and slope angles of 2� and 1.5�, respectively. The
substrate structure after 80 flows is shown in Figure 13. Note
that for the increase of c0 by a factor of 2, the wavelength
has decreased by a factor of

ffiffiffi
2

p
from 430 m to 310 m. This

is consistent with the decrease in the timescale by a factorffiffiffiffiffi
c0

p
with the increase of c0. This dependance is further

established by a larger set of simulations whose results are
shown in Figure 14. Here the wavelength of the SW is
plotted versus the initial concentration. Notice the good fit of
these points to a line of the form l∝ 1/

ffiffiffiffiffi
c0

p
. We also studied

the effect on l of variation in the other controlling variables
(H, q0, and {di}). We found that there was weak or little
dependance on these variables.

3.4. Dependance on Particle Diameter

[61] Finally, we turn our attention to the effect of particle
diameter, d, on the development of the SW. We fix the lock

height at H = 1.5, the number of grain types at one, and
the initial particle concentration at c0 = 0.8%, and study the
dependance of the SW development on both d and the slope
angle, q0. We present two cases in Figures 15 and 16, where
we display the substrate structure after 25 flows. The particle
diameters are 600 mm and 1000 mm (Rpi = 56 and 120), with

Figure 14. Dependance of SW wavelength, l, on the initial
particle concentration, c0. The result of a set of simulations
similar to those shown in Figure 13 (H = 1.5 and q0 =
1.5�) are shown as the blue line. A fit to the data of the form
l = l1

ffiffiffiffiffiffiffiffiffiffiffi
c1=c0

p
, where l1 = 344 m and c1 = 1.0%, is shown as

the dashed red line.

Figure 15. Development of SW on a substrate after 25
flows, to study the effect of the particle diameter, d. The
x-y image is colored according to the average grain diameter.
The initial obstacle has the reduced height shown in Figure 4.
The color bar is a rainbow, starting from 200 mm at blue
and ending at 1000 mm at red. The profiles are shown for:
(a) d = 600 mm (Rpi = 56), q0 = 1.0� and (b) d = 1000 mm
(Rpi = 120), q0 = 1.5�.

Figure 16. Particle volume concentration of the flow in the
x-y plane at the normalized time, t = 8, for flow, f = 25, to
study the effect of the particle diameter, d. This corresponds
to simulations of Figure 15. The color bar is a rainbow, start-
ing from 0 at blue and ending at 1.5% at red. Also shown are
the depth averaged current variables: (blue) velocity U �
100 in m/s, (white) concentration C � 2 � 104, (green) cur-
rent height h in m, (red) change in Froude number F2 � 200,
and (yellow) shear velocity term in the resuspension Vshr

5 �
5 � 106 in (m/s)5. All quantities plotted have SI dimensions.
The profiles are shown for: (a) d = 600 mm (Rpi = 56), q0 =
1.0� and (b) d = 1000 mm (Rpi = 120), q0 = 1.5�.

Figure 17. Phase diagram for SW in the d-q0 plane, where
d is the particle diameter and q0 is the initial slope of the sub-
strate. Range of d displayed corresponds to Rpi = 30 to 120.
The three regions are identified according to the phase of the
SW: (red) “no SW,” (yellow) “SW buildup,” and (green)
“SW growth”. The points simulated in Figure 15 are plotted
as black dots and labeled (a and b) consistent with that
figure.
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slope angles of 1.0� and 1.5�, respectively. The two cases
display a very similar development of “SW growth”
to Figures 5c and 6c. As the grain diameter increases, the
particle mass and the settling velocity increases, leading to
more difficult resuspension. To obtain a similar SW growth
for the larger grain diameter, the slope needs to be increased.
[62] A much larger set of simulations is used to define

the three regions corresponding to the phases of the SW, in a
d-q0 plane (where the initial lock height, H, and initial par-
ticle concentrations, c0, are constants). This phase diagram
is shown in Figure 17, and is analogous to Figure 12 of
the previous section. Two lines divide this plane into areas
of “no SW,” “SW buildup,” and “SW growth”. The two
exemplars shown in Figure 15 are indicated as black points
on this figure.
[63] To establish a further connection between SW gen-

eration and resuspension, systems with two different lock
widths, W, were examined—a width of 4 as in all previous
simulations, and a reduced width of 2. Figure 18 shows
the change in the boundary of the “SW growth” phase in the
d-q0 plane with this decrease in W. This boundary is given
by the critical angle, qc as a function of grain diameter, d.
For this narrower lock, fewer particles are included in the
current which increases the critical angle for the same
diameter. The two critical angle curves, qc(d), are compared
to the normalized inverse of the resuspension term, Es. The
Dietrich relation for the settling velocity with a characteristic
normalized shear velocity of Vshr = 0.15 is used to calculate
Es. The good correlation between these curves, qc(d) and
Es
�1(d), shows that SW generation is highly correlated to the

resuspension mechanism.

4. Conclusions

[64] After using a high resolution 2-D computer simula-
tion model of turbidity currents based on the Navier-Stokes
equations, we have developed a better understanding of
sediment wave generation. This method took into account
non-linearity, used a realistic erosion model, and modeled
the depth dependant behavior in a self consistent and self

generating way. The geometry was a lock release of a par-
ticle laden fluid onto a slope with a small obstacle. A suffi-
cient number of flows were simulated, the next flow started
after the previous flow had completed. The obstacle is only a
trigger for the sediment wave generation. After several flows,
the obstacle was eroded by the resuspension and a SW was
generated, characterized by the most probably wavelength,
l = 2ph, derived by Normark et al. [1980]. This is inde-
pendent of any details of the initial obstacle.
[65] The feedback mechanism responsible for the genera-

tion of SW comes from an interaction of the flow with the
lower boundary condition. This complex boundary condi-
tion modifies the topology of the boundary through the
deposition of particles from the fluid and resuspension of
particles from the substrate. The increased slope on the
downstream side of an obstacle increases the kinetic energy
in a flow. This will increase the resuspension, by increasing
the shear in the fluid and the net effect will be increased
erosion. This erosion into the substrate, creates a subsequent
decrease in slope. As subsequent flows climb this decrease
in slope, their kinetic energy decreases leading to increased
deposition. This creates another obstacle downdip of the
original one. The process then continues to generate a train
of self generated and self consistent obstacles in the down-
stream direction. This self consistent train of obstacles is
the SW.
[66] There is an upward migration of the SW caused by

another feedback mechanism. Once the SW is established,
the flow will preferentially deposit on the parts of the wave
with increased slope and preferentially erode the parts of the
wave with decreased slope. The result will be a migration of
the wave updip.
[67] Conditions are not always favorable for having this

feedback. We found that there are four system parameters
that influence the sediment wave growth: (1) slope, q0;
(2) current lock height, H; (3) grain lock concentration, c0;
and (4) particle diameters, {di}. The behavior of the system
was studied over a range of these parameters, 0� ≤ q ≤ 2�, 0 <
H ≤ 2, 0.4% ≤ c0 ≤ 1.2%, 400 mm ≤ d ≤ 1000 mm, and up to
120 flows. Three phases of the system were found: (1) “no
SW,” (2) “SW buildup,” and (3) “SW growth”. These phases
are characterized by whether or not the conditions are
favorable for the feedback which leads to SW growth. For
the first phase, the conditions are always unfavorable. For
the second phase, the conditions are sometimes favorable
(on the downslope side of the obstacle). For the third phase,
they are always favorable. The conditions are determined by
the parameters. This allowed us to do systematic parameter
studies and define three regions in the four dimensional
(q0, H, c0, d) space according to the phase of the system – the
phase diagram.
[68] It should be noted why we only considered the four

variables (q0, H, c0, d). An analysis of dimensionless partial
differential equations (6)–(8) for w, y and {ci} indicates that
there should be three governing parameters associated with
the gravity unit vector, ĝ, typical vorticity, w0, and the
average settling velocity, 〈usi〉. Here we have reduced the set
of particle concentration equations, over index i, to only one
for the total concentration, c. We have neglected first order,
Dd (sorting), and higher order effects on the substrate phase.
The dependance on Re and Pe have been neglected because

Figure 18. Critical angle for SW growth, qc as a function
of grain diameter, d, for two different lock widths, W. The
qc(d) curves are shown a red solid lines. A theoretical
expression for the resuspension, Es, is compared to these
curves by plotting the function A/Es, where A = 1.77 fits
the W = 4 curve, and A = 2.42 fits the W = 2 curve. These
fit expressions are plotted as dotted black lines.
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of the reasons stated in section 2.3. Although the depen-
dance on c0 is normalized out of these equations, it is
reintroduced by the resuspension in equation (13). We now
have four governing parameters. The average 〈usi〉 can be
associated with the particle size d, ĝ can be associated with
q0, the resuspension with c0, and finally w0 can be associated
with H. The lock height, H, is really a surrogate for the flow
size. Little dependance was found to the aspect ratio, W/H,
of the lock by Blanchette et al. [2005] and by us when the
lock width was doubled, and the dependance on the lock
width, W, can be normalized out of the problem by Lo. We
now see that the four governing parameters can be associ-
ated with the four variables that were studied.
[69] Each phase was found to be characterized by several

different things. The first and most simple phase, “no SW,”
has a simple structure. There in no development of SW or
periodic structures in the flow. The flow has a monotonically
decreasing mass as a function of time. There is no significant
erosion. The deposited substrate has little evidence of the
individual flows. It appears to have one massive bed that
becomes gradually more fine grained downslope and grad-
ually more coarse grained from bottom to top. The second
phase, “SW buildup,” has some more structure. There is a
rather rapid local development of a SW, but this SW then
reaches a steady state profile. The flow, as a function of
time, has a relatively constant mass with a maximum.
It shows a periodic structure in velocity, concentration and
especially F2 that correlates to the SW wave structure. There
is no appreciable erosion. The deposited substrate still has
little evidence of the individual flows. It has one massive bed
with gradually changing characteristics. It becomes more
fine grained downslope. Vertically is shows more character
than the first phase with the grain size showing an gradually
oscillatory behavior. The third phase, “SW growth,” has
significant structure. There is a global development of a SW
that initially grows exponentially. The flow has a monoton-
ically increasing mass that nearly doubles. It shows structure
in the velocity, concentration, F2, and erosion that are syn-
chronized to the SW structure. It has significant erosion
that increases exponentially in the upstream direction within
the flow. The deposited substrate has distinct deposited beds
for each flow that show a complex structure.
[70] We found that the driving force behind the estab-

lishment of the SW is the self sustainment of the flow. This
is evidenced by the time evolution of the mass, the threshold
for the SW generation, boundaries of the SW phases, and the
functional dependance of the critical angle, q0(d), for various
initial lock widths.
[71] The wavelength of the SW, l, was found to be a

significant function of the grain lock concentration, c0.
It scaled as 1/

ffiffiffiffiffi
c0

p
, directly related to how the timescales.

The three other system parameters were found to have weak
or little effect on l.
[72] SW generation presented in the linear stability anal-

ysis (LSA) [Flood, 1988; Lesshafft et al., 2011] is of a dif-
ferent physical origin than the one presented in this study.
In the LSA, internal waves (Lee waves) are generated in the
basal boundary layer, the shear layer, of the stratified flow as
it passes over an undulating erodible bed. These internal
waves generate a coherent coupling with the bottom topog-
raphy and can be a mechanism for unstable growth of SWs.

In our nonlinear study, the SW is coupled to the lower and
upper parts of the current, simultaneously. In our case, SWs
are generated by erosion and deposition from a single
obstacle and this induces the most probable wavelength for
the growing SW. In the LSA, a key condition for an unstable
wave to occur is that the flow velocity thickness of the
boundary layer needs to be thinner than the concentration
thickness of the boundary layer; while the flow can be sub or
super critical. In our case the current needs to be self sus-
taining, with erosion larger than deposition, or super critical
over a wide spatial range in the x direction. In the LSA,
the unstable SW wavelength is typically in the range of
1–10 km. In our case, the wavelength is relatively shorter
and is consistent with the relation l = 2ph. For current
height, h, in the range 50 to 100 m, the wavelength, l, is in
the range 300 to 600 m. In LSA and in our case, the grow-
ing SW tend to migrate upslope, by depositing during the
up-flow and eroding during the down-flow; this is consistent
with field observation. We conclude that LSA and our study
give two different physical origins for SW generation: SW
in LSA, are generated in basal boundary layer of the flow
and have a relatively longer wavelength; and SW, in our
case, are correlated with the bulk flow and have a relatively
shorter wavelength.
[73] Finally, we discovered a rather direct path from the

physics of the flow to the structure of the deposited sub-
strate. Starting with the flow, the work of Blanchette et al.
[2005] established two regimes depending on whether the
flow is self sustaining or depositing. Our work has estab-
lished the relationship between self sustainment within one
flow and sediment wave generation on the substrate surface
over multiple flows. In fact, there are phases of SW forma-
tion, determined by whether the system never, sometimes or
always generates SW. The phase is determined by four
system parameters, and a phase diagram can be constructed
in terms of these parameters. There are strong indications
that there is a further direct relationship between the phase
of SW formation and the structure of the deposited substrate.
This structure can be identified as a geologic texture, or
more commonly called geologic facies. This is a very
remarkable result – there are physical phases that could well
correspond to geologic facies.
[74] Future work will focus on further study on the

emergent structure appearing in the deposited substrate.
Longer runs are needed to see the stationary character of the
self organization, and modern techniques might be used to
characterize the self organization. We are also interested in
understanding the effect of the sorting, Dd, on the substrate
phase diagram. Three issues need to be refined to have
more realistic models and quantitative results. In 2-D, the
influence of larger Re > 1000 on the phase diagram of SW
generations needs to be simulated and studied. A closure
relation for the turbidity current dynamics, which depends
on the turbulent energy, is required. 3-D simulation would
be useful in obtaining a consistent shear layer that includes
the turbulent structure. This could be applied to construct the
shear velocity from basic principles for the 2-D simulation.
Detailed, first principles, simulations of the grain-fluid
interactions, in both 2-D and 3-D, would be very useful in
deriving a resuspension model from basic principles that can
be included in the 2-D simulation.
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