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We present a general method for optimizing the configuration of an experimental
diagnostic to minimize uncertainty and bias in inferred quantities from experimental
data. The method relies on Bayesian inference to sample the posterior using a physical
model of the experiment and instrument. The mean squared error (MSE) of posterior
samples relative to true values obtained from a high fidelity model (HFM) across multiple
configurations is used as the optimization metric. The method is demonstrated on a
common problem in dense plasma research, the use of radiation detectors to estimate
physical properties of the plasma. We optimize a set of filtered photoconducting diamond
detectors to minimize the MSE in the inferred X-ray spectrum, from which we can derive
quantities like the electron temperature. In the optimization we self-consistently account
for uncertainties in the instrument response with appropriate prior probabilities. We also
develop a penalty term, acting as a soft constraint on the optimization, to produce results
that avoid negative instrumental effects. We show results of the optimization and compare
with two other reference instrument configurations to demonstrate the improvement. The
MSE with respect to the total inferred X-ray spectrum is reduced by more than an
order of magnitude using our optimized configuration compared with the two reference
cases. We also extract multiple other quantities from the inference and compare with the
HFM, showing an overall improvement in multiple inferred quantities like the electron
temperature, the peak in the X-ray spectrum and the total radiated energy.
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1. Introduction

A common task when studying plasmas in the laboratory is the measurement and
interpretation of X-ray radiation. X-ray emission is particularly useful in diagnosing high
energy density physics (Matzen et al. 2005; Drake 2006) and inertial confinement fusion
(Nuckolls et al. 1972; Lindl 1995) experiments where the spectral characteristics and
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total output of the X-ray emission can help to constrain important physical quantities
like pressure, temperature and the areal density of the confining shell (Ma et al. 2013;
Knapp et al. 2019). Additionally, when studying the effects of radiation on materials
and electronics, these detectors are crucial for understanding the total output and spectral
content of the radiation source (Coverdale et al. 2010; Ampleford et al. 2014). In magnetic
confinement fusion devices, such as DIII-D (Luxon 2002), JET (Rebut, Bickerton & Keen
1985; Keilhacker & Team 1999) and ITER (Iter 1999; Aymar, Barabaschi & Shimomura
2002), arrays of soft X-ray detectors are used to measure spatially resolved temperatures
(Alper et al. 1997; Delgado-Aparicio et al. 2007) which help to constrain the configuration
and performance of the plasma.

Unfortunately, the detectors used to measure the radiation of interest are difficult to
calibrate resulting in large uncertainties and must be fielded in harsh environments that
contribute artefacts to the data. Furthermore, the detectors integrate over photon energy
and space, meaning that very little of the spectral information is preserved in the raw
measurement, making the extraction of important physical quantities an ill-posed inverse
problem. In order to extract useful physical information from a set of radiation detectors
we must impose a model on the analysis that relates observed diagnostic signatures to
the parameters of interest. The forward physics model used to do this is quite often an
oversimplification of the object under study, necessitated by computational convenience
and/or interpretability. These simplifications can introduce bias in the inferences made
from measurements and must be understood. Finally, the precision with which we can infer
a specific quantity of interest (QOI) will depend not only on the quality of the detector
calibration, but also on our choices as experimentalists regarding how to configure the
instrument.

Bayesian inference is a popular choice of methodology to solve the inverse problem
of inferring QOIs from measurements where prior information is used to regularize the
solution and probabilistic models are used to sample the posterior distribution providing
the experimentalist with most-likely parameter values as well as credibility intervals and
correlations (Wikle & Berliner 2007; Von Toussaint 2011). Uncertainties in instrument
responses can be incorporated through prior distributions on their values which express
our degree of belief in a certain value before the observations are made.

Here, we demonstrate an experimental design methodology using synthetic experiments
that takes advantage of Bayesian inference for uncertainty quantification, and optimizes
the configuration of a set of radiation detectors to maximize the confidence in our
inferences within the available resources. We show that, through proper choice of
optimization metric, this procedure simultaneously minimizes the uncertainty and the bias
in the inference, allowing us to optimally configure our instruments to provide unbiased
estimates to the extent possible in the presence of an inadequate forward physics model
and uncertain instrument response characteristics.

The remainder of this paper is organized as follows. In § 2 we define the inference
and optimization problem of interest, identifying the general properties of each step and
the form of the optimization metric. In § 3 we apply this framework to the problem of
interest, which is intended as a pedagogical example with realistic properties, identifying
the models used and parameters needed. We further develop the metric, showing different
options for assessing error and adding a penalty term to deal with real diagnostic
limitations that our model cannot naturally take into account. In § 4 we present the
results and discuss the performance of our approach. Finally, in § 5 we discuss the
application of this method to less idealized problems as well as extensions to this
formalism.
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2. Problem description
2.1. Inference

In our problem of interest we cannot measure the parameters θ describing the physics of
interest directly. Instead we make measurements using instruments that depend implicitly
on the values of θ through the physics model. Often we have multiple instruments whose
observations have sensitivity to multiple different parameters. Thus using all instruments
simultaneously is the most effective way to determine θ that best describes the ensemble
of measurements.

We start with a parameterized model of our physical system of interest

y = f (d; θ), (2.1)

where d are the independent coordinates of interest (e.g. time, spatial coordinates,
frequency, etc.), and θ are the parameters. The output of the function f is expressed over
the independent coordinates and will be used by diagnostic models to produce synthetic
observations. We obtain several diagnostic measures Oi, i = 1, . . . , M which are functions
of the output of the physical model and configuration details of the instrument

Oi = gi( y; Zi) + δi, (2.2)

where gi(·) values are known functions, Zi values are the known configurations of the
diagnostic instruments and δi values are the unknown measurement errors.

The Zi values represent all the information needed to field and interpret the instrumental
data. These could be specific choices made when configuring the instrument (e.g.
the source-to-detector distance, detector type, probe laser power, filters, attenuation on
an oscilloscope, etc.), as well as quantities that define the response characteristics of
the instrument (e.g. sensitivity of the detector, thermocouple temperature coefficient,
collection solid angle, etc.). Most often the quantities representing specific choices are
known with a high degree of certainty and represent a finite set of available configurations.
These quantities can be used to control how sensitive a given instrument is to a given
QOI. Different instrument configurations may be ideally suited for different experimental
configurations and different QOIs, and so choices must be made on a per-experiment basis.
Additionally, these choices can also effect the expected signal levels, so background and
noise contributions, as well as instrument dynamic range, must be well understood in
order to configure an instrument such that a reliable signal is obtained. Quantities in this
category are generally not treated as random variables in our formalism, but rather specific
choices that must be made.

The quantities representing response characteristics are usually quantities that require
calibration and are known with some uncertainty. There can also be unknown bias in the
calibration data, or drifts with time, that must be accounted for. As such, these quantities
are treated as random variables in the formalism in order to capture the uncertain nature
of their values.

Since some instrument parameters are to be treated as random variables, and others
not, we will break the Zi values into two groups: Zi = [zi, ξi], where the zi values are
deterministic variables, and ξi values are random variables. Specifically, the ξi values will
be treated as normally distributed variables where the mean and standard deviation are
known, ξi ∼ N (μi, σi). These uncertain quantities are marginalized out when the posterior
is sampled.

Using Bayesian inference we wish to estimate the posterior distribution of the
parameters θ , p(θ | O), where O = (O1, . . . , OM). In addition to estimating the model
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FIGURE 1. Network describing our experimental inference problem. Model parameters θ
with appropriate prior distributions are fed into the forward physics model f (d; θ) producing
deterministic output quantity y. Model output is fed into the diagnostic models whose behaviours
are controlled by the configuration choices zi and stochastic calibration values ξi. The output of
the diagnostic models are compared with experimental observations Oi. Additional unobserved
quantities of interest are computed as Y = h( y).

parameters θ , we may also wish to estimate some unobserved output quantity Y = h( y).
This inference is shown as a network graph in figure 1. Once we establish appropriate prior
distributions on the θ and ξi, we can use standard Bayesian computational algorithms to
sample from the posterior.

2.2. Optimization methodology
Having established a means to infer physical parameters θ from a set of observations
{Oi}, the question then becomes how best to configure our instruments in the face of
uncertain response information and simplified physics model to minimize the resulting
uncertainty and bias on inferred quantities. This task, as with most instrument design and
sensitivity analysis tasks, will be done with synthetic data taken from a high fidelity model
(HFM). This approach means we know the true θ values a priori, but saying this belies
the true complexity of the situation. The HFM will produce a rich variety of data that
we cannot possibly hope to infer with our reduced model. This requires that we develop
a physics-motivated mapping from the HFM to a reduced representation that we can
compare with our model.

Once we have chosen this mapping, we must optimize the configuration of our
instrument with a metric that embeds this mapping. This, in principle, is not so
challenging an optimization problem, although the parameter space describing an
instrument configuration can be quite large. However, when considering real instruments,
there is almost always a finite set of configurations that are practical to achieve. While this
does restrict the space, it means that the optimization procedure must be able to handle
mixed continuous and discrete parameters. Additionally, for real problems the physics
forward model and diagnostic models can be quite expensive to run, so choosing an
optimization procedure that minimizes the number of samples drawn is advantageous.

For these reasons we apply Bayesian optimization (BO) to the problem (Jones, Schonlau
& Welch 1998; Shahriari et al. 2016; Frazier 2018). BO allows for optimization of
expensive black box functions without access to gradients, it is able to handle mixed
parameters (e.g. continuous, discrete, categorical), it readily applies constraints, and it
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is efficient at finding suitable optima. BO works by approximating the objective surface
using a Gaussian process (GP) which provides an estimate of the mean and variance of
the function at all points in the parameter space (Williams & Rasmussen 2006; Schulz,
Speekenbrink & Krause 2018). An initial random set of function evaluations is used to
create a first guess at the objective surface. The key novelty of BO is that both the mean
and the variance are used to choose the next evaluation point. Instead of just finding
the maximum value predicted by the GP, the GP is fed into another function, called the
acquisition function whose maximum is a compromise between maximizing the mean and
maximizing the variance of the GP. This allows the optimization algorithm to balance
exploitation and exploration, providing a tendency to search the space and not settle for
the first local optimum found. Other optimization algorithms could easily be used instead
of BO. This may be necessary as the dimensionality of the problem increases since GPs
could become computationally prohibitive in this regime.

Many metrics exist in the literature to help one minimize uncertainty in inferred
quantities, such as the Fisher information, etc. (Silvey 1980). Due to computational costs
most of the available metrics rely on maximum likelihood or maximum a posteriori
estimates to form the metric. These methods can introduce bias because they rely
on finding an optimum which, particularly in high-dimensional problems, can be far
from the highest density portion of the distribution. The information matrix is then
estimated using the Hessian at this optimum, which may not represent the curvature of
the high density region (Murphy 2022). Since we will be sampling the posterior in our
inference of parameters θ we would prefer to retain the information contained in the
posterior when computing our optimization metric. Some metrics have been developed to
estimate the information gain in the presence of new data utilizing the full posterior, e.g.
the Kullback–Leibler divergence (Bishop & Nasrabadi 2006), however, estimating this
quantity using samples from a posterior can be a numerically challenging and unstable
problem, often necessitating the use of analytic approximations of the posterior, e.g.
variational inference (Bishop & Nasrabadi 2006). Here, we propose the use of the mean
squared error (MSE) between the distribution of posterior values of q and the true value
Q from the HFM given by

MSE j = 1
N

N∑
k=1

(q j
k − Q j)2, (2.3)

= 1
N

N∑
k=1

(q j
k + 〈q〉 j − 〈q〉 j − Q j)2,

= (〈q〉 j − Q j)2 + 1
N

N∑
k=1

(q j
k − 〈q〉 j)2, (2.4)

where N is the number of posterior samples. Here, q(Q) is any quantity of interest that
can be derived from the LFM (HFM). This allows us to not only consider the quality of
the fit to the model parameters θ , but any latent quantity that is important but not directly
measurable. We have added an index j to the quantities in (2.3) to note that in general we
will be measuring the quality of the fit against more than one realization of the HFM to
avoid overfitting to a single instance representing a single set of plasma conditions. We
refer to the set of instances we optimize against as the training data, and each individual
instance j as a training sample. In (2.4) we show that the MSE j is equivalent to the
sum of the square of the bias between the mean of q j conditioned on our observations
〈q〉 j = E[p j(q | Oi)] and the truth value Q j computed from the HFM, and the variance
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in the posterior p j(q | Oi) (Bishop & Nasrabadi 2006). Therefore, minimizing the MSE
conditioned on the observations Oi over diagnostic configuration zi ensures that we pick a
configuration that will allow an inference maximally consistent with the HFM quantity of
choice Q j across the training samples.

One subtlety regarding this metric is that it is non-negative. Gaussian processes have
known deficiencies in approximating these kinds of functions. Additionally, the vanishing
value of the MSE as it approaches zero serves to de-emphasize improvements made once it
has reached a sufficiently small value. As such, we will use log(MSE) in our optimization
metric, making the function attain both positive and negative values and transforming
small values to arbitrarily negative ones, improving the performance of both the GP and
the optimization. If using a different optimization technique this may not be necessary.
Additional information can be added to the optimization metric to enforce constraints or
impose domain specific knowledge. The metric will generally take the form

M = log

⎛
⎝ 1

K

K∑
j=1

MSE j + L j

⎞
⎠ , (2.5)

where L j is a loss, or penalty, term used to add any additional information that is not
explicitly accounted for in the posterior and an average is taken over the training samples
before the logarithm is taken.

Our optimization algorithm relies on Bayesian inference to compute the metric.
Therefore, at each iteration, we must compute the synthetic data from the HFM using
the updated diagnostic parameters so that we can obtain our samples qi from the posterior
and compute the MSE. To initialize our optimizer we generate n space-filling samples of
zi in our parameter space. Our algorithm is summarized as follows:

Algorithm 1 Instrument Optimization
1: Generate n random samples of zi
2: for all zi do
3: for all training data j = 1 · · · K do
4: Generate Oj

i(zi, ξi)

5: Sample posterior pj(θ | O1, . . . , OM) to obtain qj
k values

6: Compute MSEj and Lj

7: Compute M
8: Fit GP to initial n points
9: compute expected improvement

10: select new design point zi to maximize expected improvement
11: repeat
12: for all training data j = 1 · · · K do
13: Generate Oj

i(zi, ξi)

14: Sample posterior pj(θ | O1, . . . , OM) to obtain qj
k values

15: Compute MSEj and Lj

16: compute M
17: fit GP to all M values
18: compute expected improvement
19: select new design point zi to maximize expected improvement
20: until max iteration
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The iteration stops when a specified stopping criterion is met, typically a maximum
number of iterations. To perform our optimization we use the GPyOpt package (GPyOpt
authors 2016), which we found to be suitable for our application. In GPyOpt, discrete
variables are handled by marginally optimizing over feasible values, which can be
extremely slow if many discrete variables are used, but is tractable in our case.
Other packages exist that may be able to better take advantage of modern computing
architectures, e.g. GPUs, for improved computational efficiency and parallelism (Knudde
et al. 2017; Balandat et al. 2020).

Before moving on, we note that steps 8–9 and 17–18 in our design optimization
algorithm constitute the use of BO. In principle, BO could be replaced with any other
appropriate optimization algorithm given the problem structure. For example, genetic
algorithms (Mitchell 1998) could be utilized for problems with mixed discrete and
continuous variables as demonstrated here. For continuous variable problems, gradient
based methods may be appropriate. We refer the reader to the textbook (Kochenderfer &
Wheeler 2019) and references therein for a review of available methods.

3. Radiation detector optimization

As an exemplar problem, we will explore the use of radiation power detectors to measure
certain properties of hot, dense plasmas. In experiments that generate hot dense plasmas,
such as in magnetic confinement fusion devices, inertial confinement fusion plasmas and
other similar objects, intense X-ray radiation is generated from the object under study.
The X-ray emission from these objects carries with it information about the state of
the plasma, including its temperature, pressure and volume. A simple diagnostic used
to measure this emission is an array of radiation power detectors. The exact kind of
detector varies depending on the characteristics of the experiment. We will consider
photoconducting diamond (PCD) detectors, which are pieces of diamond over which a bias
voltage is applied, typically ∼100 V. When X-ray photons are absorbed in the diamond
a photocurrent is produced, which is proportional to the X-ray power incident upon the
detector. The response of the PCD is therefore determined by the frequency dependent
absorption of X-rays in the detector and the sensitivity of the element.

Often, numerous PCDs are fielded on a given experiment with a variety of X-ray filters
in front of each element. The filters attenuate different portions of the X-ray spectrum,
producing weighted integrals over photon energy. These weighted integrals are what allow
us to obtain information about properties of the emitting plasma. By way of providing a
concrete example to study we will consider the emission from a cylindrical deuterium
plasma surrounded by a beryllium liner. This configuration is similar to the plasmas
studied at the stagnation phase of MagLIF experiments (Slutz et al. 2010; Gomez et al.
2015, 2020; Yager-Elorriaga et al. 2021) fielded on the Z machine at Sandia National
Laboratories (Savage et al. 2011).

In order to test our inferences and optimize the diagnostic configuration we must first
generate synthetic data from our HFM. We are using an ensemble of one-dimensional
simulations implementing the GORGON magneto hydrodynamics (MHD) approach
(Chittenden et al. 2004; Ciardi et al. 2007; Jennings et al. 2010) to provide these data. From
each calculation we post-process the data to produce the spatially integrated spectrally
resolved emitted power, given by

Pε(t) =
∫

V(t)
exp(−τ �

ε )ε(r, t) dV, (3.1)



8 P.F. Knapp and others

where ε(r, t) is the plasma emissivity as a function of space and time and exp(−τ �
ε )

accounts for attenuation from the liner. The emissivity is computed using a bremsstrahlung
emission model which takes the density and temperature of the plasma at each point in
space and time as inputs (Knapp et al. 2019, 2022). The radiated power is the quantity that
the PCDs are directly sensitive to, so we can use this to produce synthetic voltage signals
from a suite of PCDs. This signal depends on the input impedance of the oscilloscope I
(assumed to be 50Ω), the sensitivity of the element S, the solid angle subtended by the
element �Ω , the spectral absorptivity of the detector and the transmission of the filter
applied to the detector. The solid angle is �Ω = 4πd2/A, where d is the distance from
source to detector and A is the active area of the detector. In general, the transmission of
X-rays through a material can be written as

Tε = exp(−ρ�κε), (3.2)

where ρ is the density of the material, � is the path length of the X-rays through the
material and κε is the photon energy-dependent opacity. It follows that the absorption is
just Aε = 1 − Tε . Therefore, we can write the signal observed on the oscilloscope as

o(t) = SI
�Ω

∫ ∞

0
dεTε,filterAε,PCDPε(t). (3.3)

Finally, we add Gaussian noise with a mean of 0 and a standard deviation of 50 mV
to the synthetic observations. When generating synthetic data we add a random bias to
the detector sensitivity, sampled from a normal distribution with zero mean and standard
deviation equal to the uncertainty in the detector response, to account for the fact that
the true sensitivity is poorly understood. Given this model of the synthetic observations
we have multiple free parameters to choose. In order to restrict this set we fix some of
these values to those typically used on relevant experiments on Z (Jones et al. 2014).
The source to detector distance is 170 cm, the detector area is 0.01 cm2 and the detector
thickness is 0.05 cm. Fixing these parameters allows us to fix the detector absorption and
solid angle. These values are known with a small uncertainty in practice, so we use a
prior with fixed mean and variance to account for any small uncertainty we have in their
true values. This leaves three remaining quantities that need to be chosen in order to fully
specify the response of each detector, namely the filter material m, filter thickness δ and
detector sensitivity S.

In order to interpret these signals we must develop a simple model of the X-ray emission
that is efficient enough to be used in Bayesian inference, yet retains enough of the
necessary physics to be meaningful. We refer to this as our low fidelity model (LFM). For
our LFM we assume a spatially and temporally uniform pure deuterium plasma surrounded
by a beryllium liner. The X-ray emission as a function of photon energy is written as

Yε = 2�tAff VHSP2
HS exp(−τ �

ε )
gff Z

(1 + Z)2
j, (3.4)

where

j =
(

Z2 + Afb

Aff

exp(RyZ4/Te)

Te

)
exp(−ε/Te)

T5/2
e

, (3.5)

is an analytic approximation for the emissivity of hydrogen as a function of photon energy
ε, with the Rydberg constant Ry = 13.6 eV, the free–free Aff and free–bound Afb emission
coefficients, and gff = 2(0.87

√
3/π)

√
Te/ε is the free–free Gaunt factor (Epstein et al.
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2015). The deuterium fuel has volume VHS and is at pressure PHS and temperature Te and
exists for duration �t. Since we are restricting ourselves to a pure deuterium plasma Z ≡ 1.
Finally, the term exp(−τ �

ε ) captures the attenuation of X-rays emitted from the fuel as they
pass through the beryllium liner before reaching the detector, where the liner optical depth
is defined as τ �

ε = ρR�κε,Be. The attenuation is governed by the beryllium opacity κε,Be,
and the areal density of the liner ρR�.

The only parameters in this model that affect the shape of the spectrum are the
temperature Te and liner areal density ρR�. Therefore, for purposes of illustration we will
concern ourselves with estimating the plasma temperature Te, liner areal density ρR�, a
constant scale factor, which is a nuisance parameter, and the total integrated output energy.
We can simplify the expression above, and since the emission is uniform in time, fold the
emission duration �t into the scale factor to obtain the spectrally resolved radiated energy

Yε = C exp(−τ �
ε ) 1

4 gff j. (3.6)

Additionally, we obtain the total radiated energy as Y = ∫∞
0 yε dε.

It is important to note that there is an obvious mismatch between the physics contained
in our synthetic data and our LFM. The synthetic data are time dependent, but our simple
model is constant in time and provides us with a radiated energy, not power. Therefore, if
we plug (3.6) into (3.3) we will obtain a signal in units of V · s, not V . We cannot easily
add time evolution to our model, so the simplest way to overcome this is to integrate (3.3)
in time allowing us to compare our model directly with the synthetic observation.

We have now constructed a model that allows us to directly compare synthetic data
from our HFM with data generated from our LFM for a given set of parameters. Recasting
this in the notation developed in § 2.1 we have θ = {Te, ρR�, C}, zi = {mi, δi, Si}, and ξi =
{Ai, di}:

f (ε; θ) = C exp(−ρR�κε)
1
4 gff j (3.7)

gi( y; Zi) = SiI
�Ω

∫ ∞

0
dεTε,iAε,PCDf (ε; θ) (3.8)

h( y) =
∫

dεf (ε; θ). (3.9)

Now we may specify our log-likelihood function, for which we choose a normal
distribution, giving

logL ∝ −1
2

∑
i

(gi − Oi)
2

σ 2
i

−
∑

i

log(
√

2πσi). (3.10)

Combining this with appropriate priors for all parameters we obtain a statistical
model that can be sampled with standard algorithms. For the temperature we set
p(Te) = N (4, 3 keV), with bounds placed at 0.5 and 10 keV. For ρR� we set p(ρR�) =
N (1, 1 g cm−2), with bounds at 0.1 and 3 g cm−2. The bounds for temperature and ρR�

are set to fully encompass reasonable stagnation states, but limit unrealistic conditions. In
our model, the scale is extracted from the HFM by measuring the volume, pressure and
duration of stagnation such that C is expected to be O(1). Accordingly, we use a normal
distribution for log10(C), p(log10(C)) = N (log10(1), log10(3)) with bounds at log10(0.3)

and log10(30) to allow for significant departure from this expectation. Uncertainties on the
filter thickness, detector sensitivity, detector distance and detector area are accounted for
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using normal priors with standard deviations of 5 %, 5 %, 0.5 % and 0.5 % respectively.
We used pymc3 (Patil, Huard & Fonnesbeck 2010) to perform the sampling. We found that
acquiring 8000 MCMC samples per inference provided a converged chain with negligible
variance in computed expectation values.

In order to find the set of instrument parameters zi that minimizes the bias between
the posterior mean and the ground truth, and the variance in the posterior, we have to
decide relative to what. This is a subtle choice, and the so-called ‘truth’ values to which
we are comparing can affect the configuration we end up deciding is ‘best’. It is tempting
to choose the temperature and liner areal density from the HFM as the reference values.
However, as noted earlier, our model takes as its input a single temperature and ρR� while
the HFM model produces values for these quantities that vary in space and time. How
does one map from these high-dimensional spaces down to the compact representation we
have chosen? The answer is that it depends on what we wish to know and the choice of
mapping is not obvious. This ambiguity is a direct result of the missing physics in our
LFM. To circumvent this ambiguity we propose to use the time integrated spectrum Q =
Yε as the metric for comparison. This quantity is rigorously defined from both the HFM
and LFM with no ambiguous interpretation. Additionally, it is the fundamental quantity
from the experiments that is being observed, whereas quantities like temperature and ρR�

are derived from the spectrum. Once we have a configuration that produces a sufficiently
accurate fit to the spectrum we can relate the posterior distribution of model parameters
to physical quantities of interest secure in the knowledge that they faithfully represent the
spectrum and not some ad hoc mapping.

With this choice, the expression for the MSE for a single training sample can be written
as follows:

MSE j = 1
N

N∑
k=1

∫ ∞

0
dε

(
y j

ε,k − Y j
ε

Y j
ε

)2

, (3.11)

where y j
ε,k is the kth sample from the posterior of the emitted spectrum and Y j

ε is the true
spectrum from the HFM from the jth training sample. The integral is over photon energy
and the summation is over samples of the posterior. We scale the MSE by the true spectrum
to allow the emission at all photon energies to be weighted more evenly such that the peak
of the spectrum does not dominate the MSE.

There is one final factor we must consider when performing our optimization. In
practice, signals are limited in dynamic range by a variety of factors. For our purposes,
PCD signals are limited on the low end by noise and on the high end by the bias voltage.
A PCD cannot produce a signal larger than the applied bias voltage, but in reality there is a
nonlinear compression of the signal that begins at much lower signal amplitudes. The noise
limitation will manifest as large variance in the posterior when signals are sufficiently low
in amplitude causing large uncertainty in their values. In a sense, the negative aspects of
low signal strength will be accounted for naturally in the MSE. However, as a direct result
of the form of the LFM we have chosen the bias voltage limitation will not. Our model
explicitly assumes a stationary, uniform plasma and produces a total radiated energy,
meaning the time-dependent compression of the signal cannot be accounted for in the
inference. Adding time dependence to our LFM would require a substantial increase in
the complexity of the model and represents a significant challenge. In order to account for
this effect we must introduce a loss term that penalizes PCD configurations that produce
excessively large signals. This loss term is inherently domain specific and will often
come at the expense of hyper-parameters that are not defined a priori by any physical or
statistical arguments. While this introduces subjectivity to the problem, it also introduces
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a means for the experimenter to exercise control over which concerns are emphasized in
the final solution.

As stated, the voltage recorded on the oscilloscope is proportional to the incident X-ray
power with a nonlinear correction (Spielman, Hsing & Hanson 1988; Jones et al. 2014),
given as

Vosc = o(t)

1 + o(t)
Vbias

, (3.12)

where o(t) is computed from (3.3) and Vbias is the applied bias voltage. We can see that
when o(t) = Vbias/2 the recorded signal is ∼ 2/3 the actual signal. Our ability to recover
the true signal amplitude from the measured is highly uncertain. Furthermore, as o(t) >>
Vbias, the recorded signal will saturate at Vbias, making it impossible to recover accurate
estimates of the true voltage. For this reason we want to penalize large voltages in our
optimization, and we want to penalize them more strongly as they get larger. We therefore
choose an exponential form for the penalty term

L j = exp
(

max(Vpeak,i)
j

αVbias

)
− 1. (3.13)

In this expression Vpeak,i is the peak voltage on detector i from (3.3). We take only the
largest peak amongst the detectors fielded for each training sample to compute the penalty.
This form has two desirable features: (i) it strongly penalizes signals that are larger than
αVbias with increasing penalty as Vpeak increases, and (ii) subtracting 1 gives L → 0 for
values of Vpeak << αVbias, ensuring that the penalty has no effect on the optimization
if signals are kept small. With the form of the penalty chosen, we now have the full
expression for the metric we wish to optimize

M = log

⎛
⎝ 1

K

K∑
j=1

(MSE j + λL j)

⎞
⎠ . (3.14)

Where the summation over training samples produces an ensemble average of the MSE
and the penalty. Unfortunately, we are left with two hyperparameters, α and λ, that must
be chosen empirically. Intuitively, λ controls how strong of an effect the penalty has on the
optimization as a whole and α determines the voltage threshold where strong penalization
begins to take off. A small hyper parameter scan was conducted to find reasonable values
(see Appendix B). Based on this scan we set λ = 0.15 and α = 0.25 for the results that
follow.

4. Results

To perform the optimization we draw from a database of one-dimensional simulations
of MagLIF implosions, which makes up our HFM. The ensemble comprises a variety
of input parameters (e.g. laser energy coupled, liner dimensions, gas density and initial
magnetic field strength), producing a range of stagnation conditions and X-ray outputs.
The distribution of emissivity-weighted temperature, liner ρR� and total X-ray output
from this ensemble are shown in figure 2. From this ensemble we draw four realizations
that span the range of the distribution, shown in magenta, which will be used as training
data to perform the optimization. These points are selected using support points (Mak
& Joseph 2018; Joseph & Vakayil 2022) to accurately represent the full distribution. As
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(a) (b) (c)

FIGURE 2. Pairwise distributions of emissivity-weighted temperature and liner areal density as
well as total X-ray output from the ensemble of one-dimensional simulations. (a) Distribution
of liner areal density with temperature. (b) Distribution of log10 of the X-ray output with
temperature. (c) Distribution of log10 of the X-ray output with liner areal density. Grey points
show the entire dataset, blue points show those used for validation and magenta show those used
for training.

(a) (b)

FIGURE 3. (a) Best value of the optimization metric as a function of iteration for runs initialized
with five different seeds. The run in green arrived at the best solution. (b) The spectral response
of each of the five detectors including the filter for the best solution out of the five runs.

stated, multiple instances of the HFM are chosen to avoid a solution that is too finely
tuned to the specific conditions achieved in a single realization, which may not generalize
well. Finally, using support points we select another set of 16 instances from the ensemble
(shown in blue), which we use as validation data to test the performance of the optimized
configuration against two reference configurations. The reason we use such a small number
of points to train the diagnostic configuration is due to computational cost as the posterior
must be computed for each instance in the training set for each round of the optimization.

Figure 3(a) shows the results of seven separate optimization runs initialized with
different random seeds. This plot shows the best value of the optimization metric as a
function of iteration, clearly demonstrating the improvement in the optimization metric as
a function of iteration. Each run is initialized with 10 Latin hypercube (Mckay, Conover &
Beckman 1979) samples from the parameter space. The range of allowed filter thicknesses
is [5, 500 μm] and the list of allowed filter materials is given in Appendix A. We can
clearly see that each run arrives at a different best configuration, demonstrating the
non-convex nature of this problem. For further analysis we use the results of the run shown
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Detector Material Thickness (μm) Sensitivity (A/W)

1 Molybdenum 4.7 1 × 10−4

2 Palladium 18.1 25 × 10−4

3 Vanadium 26 25 × 10−4

4 Vanadium 4.2 1 × 10−4

5 Kapton 45 1 × 10−4

TABLE 1. Final configuration of filter material, filter thickness and detector sensitivity for each
of the 5 PCD elements determined through the optimization.

in pink which arrived at the best overall solution. The spectral response of each detector
which includes the transmission through the filter and the absorption in the detector is
shown in figure 3(b). The configuration is detailed in table 1, which lists the filter material,
thickness, and detector sensitivity for each detector.

In order to assess the quality of this configuration we turn to our set of validation
cases from the ensemble (blue circles in figure 2), as well as two different filter sets we
will use as reference cases for comparison. The first reference case, referred to as the
‘MagLIF’ configuration, is one that is used typically on MagLIF experiments conducted
on the Z machine. This configuration uses only three PCDs with different thicknesses
of Kapton (127, 508 and 762 μm) as the filters. The response characteristics are shown
in figure 4(a). We note that this configuration was never intended to be used to infer
stagnation quantities, only to ensure that a stagnation signal was measured in the face
of large uncertainty in the expected signal on the first MagLIF experiments. It is still used
because it achieves this goal reliably. For our purposes, we choose the detector sensitivity
to balance the three different signal strengths. The second reference configuration, referred
to as the ‘Expert’, was arrived at by choosing a set of 5 filters that overlap in ways that
provides sensitivity to different portions of the spectrum. This configuration is shown in
figure 4(b) where it can be seen that the ensemble of filter edges and bandpass regions
provide weighting to different regions of the spectrum. We, again, manually select the
detector sensitivities to balance the signal strengths as best as possible. We emphasize
that this is a reasonable, if not optimal, filter configuration that was chosen in a manner
that might be expected in practice in the absence of a clearly defined optimization metric.
Using these configurations, we create the synthetic data from each case in our validation
set and run the inference, producing posterior distributions of the spectrum and each of
the model parameters.

4.1. Comparison with spectrum
To qualitatively assess the differences in performance between the three configurations we
look at the spectra reconstructed with each configuration. Figure 5 shows the posterior
spectrum produced for three randomly chosen cases from the validation set for each of
the different filter configurations. For each case, the true spectrum is shown as the dashed
black line, the median of the posterior is shown as the solid line and the shaded bands show
the 95 % and 68 % credible intervals. The top row shows the results for the ‘MagLIF’
configuration, the middle row shows the results for the ‘Expert’ configuration and the
bottom row shows the results for the ‘Optimum’ configuration. Looking at the top row, we
see that the ‘MagLIF’ configuration performs very poorly on each of the cases chosen.
The credible intervals are very large and, although they encompass the true spectrum
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(a) (b)

FIGURE 4. (a) Spectral response for the ‘MagLIF’ reference configuration. (b) Spectral
response for the ‘best guess’ reference case.

(dashed black line), the median spectrum (solid blue) agrees very poorly with the truth.
This configuration is clearly not optimal. Examining the middle row, corresponding to the
‘Expert’ configuration, we see a marked improvement. The credible intervals are reduced
and the median is closer to the truth in all three cases, although there are still significant
discrepancies, particularly at low photon energies. Finally, examining the performance of
our ‘Optimum’ (bottom row) we see excellent agreement with the true spectrum in all
three cases. The credible intervals are further reduced and the median is very close to the
truth. Generally, the shape of the spectrum is very well reproduced.

To better understand systematic differences we can examine the performance of each
configuration across the entirety of the validation dataset. We define the difference
between the posterior and the true spectrum, normalized to the true spectrum, as Δε =
(yε − Yε)/Yε . With this metric, a perfect fit will produce 0 at all photon energies, positive
values where the posterior is larger than the true value, and negative values where the
posterior is smaller. We note that by integrating the square of this quantity over photon
energy and summing over all samples we obtain the MSE that is used in the optimization.
This is computed on the validation set to demonstrate generalizability. Figure 6 shows
Δε for each case 0–15 in the validation set as a function of photon energy for each
configuration. The curves are offset artificially for clarity. The plot on the left shows the
results for the ‘MagLIF’ configuration, the centre plot shows the results for the ‘Expert’
configuration and the plot on the right shows the results of the ‘optimum’ found using our
technique. In each plot, the dashed line indicates a perfect fit while the dark coloured line
shows the median of the posterior. The shaded bands show the 95 % and 68 % credible
intervals.

It is immediately apparent that the credible intervals, and thus the variance of the
posterior, is smaller in the optimal case than in either of the other two cases. This is most
apparent at the low and high photon energy ranges where the credible bounds diverge in
both the ‘MagLIF’ and ‘Expert’ configurations for most cases. For the ‘Optimum’ case
we can see that the agreement between the median and the true value is excellent from
about 5000–15 000 eV photon energy for all cases, consistent with the excellent agreement
shown in figure 5. The posterior tends to lie somewhat below the true spectrum at lower
and higher photon energies. The 68 % credible interval fully encompasses the true value
(above ∼5000 eV) and is very tightly constrained. The median of the posterior from the
‘Expert’ configuration exhibits similarly good agreement in the middle of the spectrum,
somewhat worse at lower photon energies, and somewhat better at higher photon energies,
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FIGURE 5. Plots showing the posterior spectrum for three different cases in the validation
set inferred using each of the different instrument configurations. The top row shows the
spectra inferred using the standard MagLIF configuration, the middle row using the best guess
configuration, and the bottom row the optimum. The dashed black lines show the true spectrum,
the solid lines show the median of the posterior, and the shaded bands show the credible intervals.

although the credible intervals are substantially larger, indicating higher variance. We
can be more quantitative by computing the log10 of the MSE averaged over the entire
validation dataset using (3.11) which is summarized in table 2. The MSE computed on
the validation set is 2.13 for the ‘MagLIF’ configuration, 2.5 for the ‘Expert’ configuration
and −0.22 for the ‘Optimum’, an improvement of more than two orders of magnitude. The
fact that the MSE is slightly worse for the ‘Expert’ than for the ‘MagLIF’ when it clearly
provides a better median fit is due in part to the large variance at the high and low photon
energies, as well as the presence of a small number of cases in the validation set that
produce particularly bad fits. Additionally, looking at the MSE for each case separately,
we see that the difference in MSE between these two configurations is not significant
relative to variance across the dataset. The improvement in MSE for the ‘Optimum’ case
is significant, and shows consistent improvement across the entire validation set. This
indicates that the optimization procedure used here has successfully found an improved
solution to the problem of inferring the X-ray spectrum using filtered radiation detectors.
We also show the peak voltages produced in each case to demonstrate that the penalty
term is producing acceptable voltages. For the ‘Optimum’ case the peak recorded voltage
across the validation set is 14.4 V. Inputting this value into (3.12) we find that the recorded
signal is compressed by ∼11 % which is acceptable and can be corrected for with high
confidence.

To compliment the MSE, we can look at how specific features of the spectrum are fit
using each configuration. Figure 7 compares (a) the inferred peak intensity of the spectrum



16 P.F. Knapp and others

FIGURE 6. The difference in the posterior inferred and true spectra normalized to the true
spectrum, Δε for each of the 16 validation cases considered. The dashed black line shows a
value of 0, indicating perfect agreement. The solid blue line shows the mean and the light and
dark shaded regions show the 68 % and 95 % credible intervals. Curves are artificially offset for
clarity.

Configuration MSE Peak (V) δI (%) σI (%) δE (%) σE (%) δTeff (%) σTeff (%)

MagLIF 2.13 35.3 13.5 30 6.6 16 20 67
Expert 2.5 15.6 5.3 21 4.2 14 10.5 35
Optimum −0.22 14.4 9.3 21 2.8 6 17.2 21

TABLE 2. Summary of performance of each of the metrics discussed on the validation dataset.
The first column shows the MSE defined on the validation set and the second column shows the
peak voltage produced over the validation set with the given configuration. Remaining columns
summarize the features computed using (4.2) and (4.3) for the peak intensity, photon energy of
the peak and the continuum slope.
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with the true value, (b) the inferred photon energy of the peak to the true value and (c)
the inferred high energy slope of the spectrum to the truth. In each plot the inferred
value is plotted on the ordinate and the true value extracted from the HFM is plotted
on the abscissa. The dashed line indicates perfect agreement. The error bars indicate the
16 %–84 % credible interval, equivalent to ±1σ for a Gaussian distribution. The slope is
defined as an effective temperature using the relation

Teff = ε2 − ε1

log(yε(ε1)/yε(ε2))
, (4.1)

where we choose ε1 = 12 and ε2 = 15 keV, the results are not sensitive to this choice as
long as the photon energies are above ∼10 keV. This expression comes from the fact that
the high energy portion of the spectrum is ∝ exp(−ε/kT). Therefore, on a log scale, the
slope of this portion of the spectrum is ∝ −1/T . Figure 7(a) shows a small improvement
of the agreement between the inferred peak intensity and the truth as well as a reduction
in the confidence intervals using the optimum configuration. Improvement in the peak
photon energy is more pronounced, with inferred values falling much closer to the truth
than in the other two cases with significantly lower scatter and credible intervals. Finally,
for the slope, which should be representative of the plasma temperature, we see somewhat
reduced scatter in the points about the y = x line and smaller credible intervals, but with
a bias towards lower inferred values. Overall, the optimum configuration is doing a better
job at reproducing specific aspects of the spectrum with reduced uncertainty. For each of
these metrics and each instrument configuration we compute the average bias and standard
deviation defined for a quantity q as

δq = 1
K

K∑
j=1

√( 〈q〉 j − Q j

Q j

)2

, (4.2)

σq = 1
K

K∑
j=1

√√√√ 1
N − 1

N∑
i=1

(
q j

k − 〈q〉 j

Q j

)2

, (4.3)

where Q j is the true value from HFM and 〈q〉 j is the expectation value from the posterior
of q for the jth training sample. We have normalized the bias and variance by the true value
of Q j so that quantities can be quoted as relative quantities. We summarize these values
in table 2 as percentages. We can see that the ‘Optimum’ configuration produces better
agreement, averaged over the validation set, for some of these metrics and not others. In
particular, the peak photon energy is fit with lower bias δE and standard deviation σE than
the other two configurations. The peak intensity is fit with a bias δI in between the two
other configurations, but with a standard deviation σI similar to the expert configuration.
The bias computed for the continuum slope δTeff also lies between the ‘Expert’ and
‘MagLIF’ configurations, but with a substantially reduced standard deviation σTeff . This
demonstrates that, averaged across the entire validation dataset, the primary benefit of
the optimized configuration seems to be in reducing the variance of the posterior and
producing a better fit to the photon energy of the peak in the spectrum.

4.2. Comparison with model parameters
Our ultimate goal is to use the inferred spectrum and this methodology to understand
the physical properties of the plasma under study. Therefore, it is desirable to compare
the posterior of the model parameters temperature and ρR� as well as the total radiated
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(a) (b) (c)

FIGURE 7. Scatter plots showing the inferred vs. true values of the peak intensity of the
spectrum (a), the location of the peak in the spectrum (b) and high energy slope of the spectrum,
as defined in the text (c). The true value is shown on the abscissa and the inferred value on the
ordinate. Median values inferred using the standard MagLIF configuration are shown in blue,
with the best guess configuration are shown in orange and the optimum configuration are shown
orange. The error bars indicate the 16 %–84 % credible interval.

output with the values extracted from the HFM for each configuration. In order to
make this comparison we use the emissivity-weighted values of temperature and ρR�.
Figure 8(a) shows the median posterior temperature on the ordinate vs. the true emissivity
weighted temperature on the abscissa for the ‘MagLIF’ configuration in blue, the ‘Expert’
configuration in orange, and the optimum in green. The error bars denote the 16 %–84 %
credible interval. We see that the credible interval is reduced over the entire validation
set for the optimum case. Additionally, the median clusters about the true value with less
spread than in the other cases. However, there is a small bias towards lower temperature
in the median inferred value from the optimal configuration. This could, however, be
alleviated with a different choice for extracting the true value, or it could be a real bias
incurred by using the simplified model. Figure 8(b) shows the posterior ρR� vs. the true
value from the HFM. This quantity is poorly constrained with any of the instrument
configurations showing no noticeable trend with the true value. The optimal configuration
does reduce the credible intervals somewhat relative to the other two configurations, but
the effect is minimal. These results indicate that the liner ρR� is poorly constrained with
this kind of instrument. Finally, we compare the inferred total X-ray output with the true
output from the HFM for each of the configurations. All three configurations perform
well on this metric, indicating that this quantity is perhaps the easiest to infer, which
is not surprising given the integrated nature of the instrument. The optimal and ‘best
guess’ configurations do reduce the credible interval as well as the bias compared with
the ‘MagLIF’ configuration, providing an overall better inference across the validation set.
Using the definitions for bias and standard deviation in (4.2) and (4.3), we compute the
performance of each configuration relative to the model parameters temperature, ρR�, and
total radiated output on the validation dataset. These results are summarized in table 3.
These metrics indicate that even though the ‘MagLIF’ case produces the minimum bias
in the ρR�, the standard deviation is very large suggesting that the differences between
configurations are not particularly meaningful. The ‘Expert’ configuration minimizes the
bias in the inferred temperature, but the ‘Optimum’ case minimizes the standard deviation.
Finally, the ‘Optimum’ case minimizes both the bias and the standard deviation of inferred
total output.
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(a) (b) (c)

FIGURE 8. Scatter plots showing the inferred vs. true values of the temperature (a), liner areal
density (b) and X-ray output (c). The true value is shown on the abscissa and the inferred value
on the ordinate. Median values inferred using the standard MagLIF configuration are shown in
blue, with the best guess configuration are shown in orange and the optimum configuration are
shown orange. The error bars indicate the 16 %–84 % credible interval.

Configuration δT (%) σT (%) δρR (%) σρR (%) δY (%) σY (%)

MagLIF 17 55 15 45 7.6 22
Expert 12.6 39 21 55 5.5 12.5
Optimum 18 22 24 34 4.4 12.2

TABLE 3. Summary of the performance of each configuration using (4.2) and (4.3) for the two
model parameters temperature and ρR� as well as the total radiated output.

Figure 9 shows a corner plot illustrating the posterior distribution of the model
parameters from each diagnostic configuration for the case shown in the first column of
figure 5. We show the posterior distribution of the temperature, liner ρR� and total X-ray
output for the ‘MagLIF’ configuration in blue, the ‘Expert’ configuration in orange, and
the ‘Optimum’ configuration in green. The solid black lines indicate the true values of
each quantity extracted from the HFM. The distribution of the output is similar with all
configurations, showing a small bias towards lower values in the inference, although the
‘Optimum’ configuration produces a narrower distribution. The ‘MagLIF’ configuration
produces a posterior distribution for the output that is slightly wider on the low side and has
a heavier tail on the high side contributing to the enhanced uncertainty. The ‘Optimum’
produces the narrowest distribution for the temperature, with the ‘Expert’ configuration
peaking in a similar range, but having a heavy tail at higher temperatures. This heavy
tail is likely the reason for the extracted temperature appearing higher, and therefore in
seeming better agreement with the truth, than the ‘Optimum’ case. In the distribution of
ρR� for the ‘Expert’ configuration we can see a bimodal distribution, with a peak at low
areal density and high areal density. This feature, which is persistent across the validation
set contributes to the significantly increased variance in the posterior of all parameters.
It is also worth noting that the correlations between the posterior temperature and ρR�

are completely different in the ‘MagLIF’ case compared with the other two. All of these
observations provide strong evidence that the diagnostic configuration arrived at through
our optimization procedure produces a posterior that is much more tightly constrained and
better behaved than the other two configurations.
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FIGURE 9. Corner plot showing the posterior distribution of model parameters for one of
the cases in the validation set. The plots on the diagonal show the marginalized posteriors
of temperature liner areal density and total output. The off-diagonal plots show the pairwise
joint distributions. The posterior obtained using the standard MagLIF configuration, best guess
configuration and optimum configuration are shown in blue, orange and green, respectively.

5. Conclusions

We have demonstrated a technique for optimizing the performance of instruments to
extract physical information from experiments using a combination of Bayesian inference
and BO. Using Bayesian inference as the core of our optimization metric allows us to
seamlessly include the effects of the myriad uncertainties that can be present regarding
instrument calibrations and other configuration parameters on our ability to extract useful
information. Bayesian optimization provides an efficient and flexible way to optimize over
instrument parameters that can be continuous or discrete. As a pedagogical example,
we optimized the configuration of a set of radiation detectors similar to what is used
to diagnose MagLIF experiments at Sandia National Laboratories. We developed a
parameterized physical model of the system that is used to fit synthetic data from an
ensemble of HFM simulations. The reduced model represents a typical case in the physical
sciences where the model used to interpret data is lacking physics that can introduce
bias. We demonstrate how to handle this by choosing an optimization metric that is
unambiguous with respect to the meaning of the quantities being compared. We also
demonstrate how to incorporate additional constraints in the optimization that are not
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captured in the inference, allowing the experimenter to enforce additional constraints or
add domain specific knowledge to the optimization.

We performed this optimization using a small subset of the HFM ensemble to train
the optimization and tested it against a larger subset for validation. Two reference
configurations were used for comparison. We examined the posterior distributions of a
variety of quantities from each of the validation cases to show that the configuration
arrived at using our optimization methodology improved both the closeness of the
inferences to the truth values from the HFM as well as the uncertainty of the fits.
Our optimization produced a fit to the experimentally unobserved spectrum that was
dramatically improved compared with both reference cases, as measured by the MSE.
Additionally, the ‘Optimum’ configuration better captured the location of the peak in
the spectrum and reduced the standard deviation in the high energy slope. The posterior
of the model parameters temperature and ρR� as well as the inferred total X-ray output
was considerably narrower and better behaved, indicating a better overall inference. The
optimized configuration did show bias in some of the inferred quantities, particularly the
temperature, which provides opportunity for further improvement. These results show that
tradeoffs will often need to be made and that it is difficult to construct a metric that allows
an instrument to perform well on all desired measurements across a wide range of possible
outcomes. In the future we will explore optimization against different Q values such as the
model parameters temperature and ρR� directly, or combinations of these quantities with
the spectrum or spectral features.

Detailed observation of the posterior spectra offers hints at how we might refine the
measurements further. Unsurprisingly, the credible intervals are largest in the high and low
energy portions of the spectrum where the intensity is lowest. The addition of information
that could better constrain these portions of the spectrum could dramatically improve
both the bias and variance of the posterior. As an example, a simple spectrometer could
measure the slope of the high energy portion of the spectrum with high confidence.
The Bayesian inference methodology allows this information to be easily incorporated
in a self-consistent manner. This would manifest as an additional diagnostic gi and
observation Oi added to the graph in figure 1. The methodology here can therefore be
extended to not only optimize the configuration of a single instrument, but a suite of
instruments, allowing experimenters and facilities to understand what new measurements,
and therefore investments, will provide the most constraining information for a given
application. The method developed and demonstrated here is entirely general and can be
applied to a wide variety of measurement and inference tasks. However, as instruments
are added the dimensionality of the optimization will increase and care must be taken
when choosing an optimization algorithm that can efficiently handle high-dimensional
problems. It may also become necessary to explore approximations to the Bayesian
inference or other algorithms that reduce the computational cost. Finally, in the future we
would like to explore the use of multi-objective optimization to optimize multiple metrics
simultaneously and examine the tradeoffs between them. The results here demonstrated
an overall improvement in the variance of the inference but the solution produced
enhanced bias in some quantities. Instead of optimizing the MSE which is the sum of
the bias and variance, one could optimize both simultaneously. This approach would
provide a means to examine an ensemble of solutions that effectively explore the tradeoff
between metrics, allowing the analyst to choose that which satisfies the needs of the
experiment.
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Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Material Kapton SS Al Ti V Fe Co Ni Cu Zn Y Zr Mo Pd Ag Sn

TABLE 4. Filter materials along with numerical index used in the optimization.
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Appendix A. Filter materials

Table 4 shows the list of filters allowed in the optimization along with the numerical
index. Filters are designated by their elemental symbol except for the two compounds
Kapton and stainless steel (SS).

Appendix B. Hyperparameter tuning

In order to set reasonable values for the hyperparameters introduced by the penalty term
in (3.13) and (3.14) we performed a small scan of each. First, we fixed α = 0.5 and scanned
λ over the range of [0, 0.2]. In figure 10 we plot the results. For each value of λ we perform
the optimization and compute the peak voltage on each detector over the entire validation
set. Each optimization was performed using the same random seed. The blue circles show
the maximum of these voltages over the entire validation set while the orange circles show
the mean over the validation set. Clearly, increasing λ decreases both metrics of the peak
voltage. We settle on a value of λ = 0.15 because it produces the minimum values in this
test.

To determine a suitable value of α we fixed λ = 0.15 and performed a similar scan
over values of α. The results of this scan are shown in figure 11. Again, we show the
peak voltage over the entire validation set and the orange circles show the mean of the
peak voltage for each case in the validation set. For this scan we see a fairly shallow
curve, with a minimum value somewhere near α = 0.5. We chose to set α = 0.25 for this
work as a balance between achieving acceptable voltages and suitable quality inferences
because driving voltages too low will sacrifice signal quality. While the hyper-parameter
tuning scan is admittedly small, it demonstrates that the loss term functions as intended
and provides a methodology to choose specific values.
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FIGURE 10. Peak voltages as a function of the hyperparameter λ. Blue circles show the peak
voltage found over the entire validation dataset, orange circles show the mean of the peak voltage
found for each case over the dataset.

FIGURE 11. Peak voltages as a function of the hyperparameter α. Blue circles show the peak
voltage found over the entire validation dataset, orange circles show the mean of the peak voltage
found for each case over the dataset.
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