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Geologic lithofacies identification using the multiscale character
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A forward acoustic model shows that geologic lithofacies groups can be identified by the character
of the wavelet transform of their seismic reflection response even for incident signals with a
wavelength much larger than the dominant bed thickness. The same model shows that multiple
interbed reflections can be neglected. This allows the use of an analytical relation of the linear
reflection response expressed as a convolution between the incident signal and the scaled derivative
of the acoustic impedance. The relation is applied to solve the inverse problem for the acoustic
impedance, using orthogonal discrete wavelet transf@iWT) and Fourier transform methods;

good agreement is obtained between the well log wavelet spectrum and both the forward modeled
seismic data and the real seismic data. It is found that the DWT approach is superior, having a better
signal-to-noise ratio and more localized deconvolution artifacts. A population of well logs
containing a wide range of lithologies and bed thicknesses, which are categorized into lithofacies
groups, is used to define the conditional probability of a wavelet transform response given a
lithofacies group. These conditional probabilities are used to estimate the lithofacies probability
given a seismic wavelet response via a Bayesian inversior20@38 American Institute of Physics.

[DOI: 10.1063/1.1610241

I. INTRODUCTION transformations given the vertical distribution of their gross

The multiscale character of geologic sedimentation andithologies and bed thicknesses, or lithofacies. The inverse
how it manifests itself in the seismic reflection record hag'€lationship along with the knowledge of the multiscale char-
been studied by many authors. This has ranged from exan@Cter of stratigraphy, allows one to analytically determine the
ining the frequency distribution of beds?to examining the ~ Probability of a lithofacies given low frequency seismic data.
theoretic reflection response of statistically generated bed AR important consideration is the impact of noise on the
sequence$ o statistical correlation of hyperspectral seismicinversion of the seismic reflection response and the ability to
attributes’ and log response using neural networks. identify the lithofacies. Coherent noise is very prominent on

There has also been a recent body of research that h8al seismic data. This noise must be taken into account in
appeared in the image processing and target recognition ||{he inversion or it will be unstable and the results unreliable.
erature that has used wavelet-based techniques to analy2égnificant steps are taken in the inversion to deal with this.
transient signalS.It has also been recognized that waveletThere is an imbedded assumption of randomness in these
analysis is the best and most fundamental way to analyze methods. Since noise in real seismic data has a significant
multiscale signal® coherent component, the inversion algorithms were applied

This article recognizes the multiscale character of depoto the real seismic data to see how well the wavelet spectrum
sitional sequences that has been examined by many authord,the rocks could be recovered. A very good result is found.
and the efficacy of wavelet decompositions in analyzing  The difference between this and previous methods lies in
multiscale signals. It establishes the fundamental relationshijts rational, model-based approach. Attempts at statistical
between the wavelet decomposition of the acoustic propefeorrelation, that is assay, of seismic response to underlying
ties of the rock sequences and the wavelet decomposition @feology suffer from(1) limited data where both a well log
the seismic reflection response. This relationship is invertednd good seismic exist2) biased data where high net pay
so that the wavelet decomposition of the rocks can be detegands are preferentially sampled, &8 an inability to ex-
mined from the wavelet decomposition of the seismic reflectrapolate beyond the range of sampled physical situations. A
tion response. It is found that even very low frequency seisrational, model-based approach allows well logs to be used
mic data(10 H2) can distinguish rock packages that have awhere there are no reliable seismic data, a compensation to
dominant bed thickness that would require frequenciege made for the biased sampling, and a reliable extrapolation
greater than 60 Hz to resolve. A popL_JIa_tion of We_II l0gs istg pe made due to the constraints of the model.
analyzed to determine the characteristics of their wavelet Tpe potential business value lies in the determination of
the probability of the lithofacies. Each lithofacies can be
dElectronic mail: michael.e.glinsky@bhpbilliton.com characterized in terms of the range of its volumetric proper-
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ties such as net sandstone percent and sandstone packagin¢ {a) lithofacies A
thickness, and reservoir flow properties such as the ratio be-
tween the vertical and horizontal permeabilities. A more de-
finitive determination of the probability of the lithofacies
will reduce the uncertainty in the recoverable volumes, well
count, and production rates. This will allow better business
decisions to be made, creating fiscal value.

This article presents, in Sec. Il, how the continuous
wavelet transform{CWT) can be used to distinguish the dif-
ferences in the acoustic properties of two end member litho-
facies. An analytic estimate is made, in Sec. lll, of the seis- 1.2 14 16 18 2
mic reflection response by forward modeling using a scale (logl10 m)
hydrodynamic, that is acoustic, computer algorithm that does
not allow for shear wave propagatith'! An extension of
this modeling shows that multiple interbed reflections are not (b) lithofacies B
important. This allows a linear approximation to be made, in
Sec. IV, and a relationship inverted to give the wavelet de-
composition of the lithofacies given the wavelet decomposi-
tion of the seismic reflection response. It is shown that the )
discrete wavelet transforh*(DWT) gives a superior inver- =
sion compared to the Fourier transfoffT). In Sec. V, the E"
inversion relationship is applied to the real seismic data cor-
responding to the two modeled rock lithofacies. Very good
agreement is found. In Sec. VI, the conditional probability of
a CWT given a lithofacies is determined from well logs, and : l4 L6 L& 2
the probability of a lithofacies given a seismic wavelet trans- scale (log10 m)
form response is calculated for the two real seismic dat%IG. 1. (Color) Derivative of the well log acoustic impedance vs depth
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examples. shown as the blue line graph on the right, continuous wavelet transform
(CWT) plotted as the color image. The CWT has had a 30 m boxcar
smoother applied in the depth direction to its absolute value. The color bar
is shown on the right-hand side. It ranges from 0 to the maximum value of

II. WAVELET DECOMPOSITION OF ACOUSTIC ROCK the CWT normalized to 1. This will be true of all CWTs that are displayed
P.ROPERTIES in the figures(a) Lithofacies A, the part of the CWT shown as thecircle

corresponds to beds of the size and location of the larger bar shown on the

- . . blue line graph, the circle corresponds to the smaller bés) Lithofacies
Two geologic lithofacies groups are the testbed for thisg. graph, thes P o

analysis. They have significantly different depositional envi-
ronments and different bed sequencing, that is different mul-
tiscale behavior. They will be called lithofacies A and B. A . o
well database of 11 cases for lithofacies A and 15 cases for c//(,(x)=f dX (X" )u (X" —x), (1)
lithofacies B were used in this study. One characteristic case 0
was used from each group for the more detailed analysisvhereu,(x) is a set of basis functions of scade The basis
Although many of the cases did not have good seismic whiclused is the Mexican hat basis
corresponded to the well log data, both characteristic cases
did have good seismic data, even though the seismic data had Yo =11~ (2x°o®) Jexp =X o), 2
significant differences in acquisition, processing, and thehosen because of its similarity to the incident wavelet of
wavelet. An approximate 250 m segment was clipped out ofypical seismic data. Once this CWT is applied to the signal
the well logs(density, p, and sound speed,) for the two the absolute value is taken and then it is smoothed by a
characteristic cases. A 100 m cosine taper was used to mitboxcar filter of length 30 m in th& direction. This smooth-
gate the effect of the clipping. The clipping points were alsoing is done to match the typical depth resolution of seismic
chosen in a zone of relatively weak reflectivity to also miti- data. If this smoothing is not done, it is very difficult to
gate the clipping effect. It was verified that the clipping madecompare the response to that of the seismic data—there is
little difference to the wavelet decomposition in the zone ofjust too much detail in the well log data. The CWT of the
interest. The derivative of the acoustic impedanae is  two signals are shown in Fig. 1. The CWT is shown as a
shown as a function of depth for both characteristic cases inolored image in depthx and scaleg, where the color is
Fig. 1. There is little difference between the appearance ofletermined by the smoothed absolute magnitude of the
these two signals. There are two bed sizes shown as bars @WT. Note the significant differences between the two litho-
Fig. 1(a). These will be discussed in a moment. facies. Lithofacies A shows a complex structure of beds of
The CWT is then taken of the two signals to highlight size 50 m near the top of the packdgete the circle labeled
the differences between lithofacies A and B. The CWT isa in Fig. 1(a), and the large bar in Fig.(4], and beds of
applied to a signals(x) by a convolution many sizes including 20 fmote the circle labele@ in Fig.

Downloaded 14 Oct 2003 to 192.58.150.40. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



5352 J. Appl. Phys., Vol. 94, No. 8, 15 October 2003
(a) S0m (b) 100 m
100t 100
200+ 200

depth (m)
()
[l
[
depth (m)
(V%]
<
(=)

400 400
500 500
600~ 600

FIG. 2. Incident Mexican hat wavelets shown as amplit(ateitrary unit$
vs depth for(a) =50 m and(b) o =100 m.

1(a), and the small bar in Fig.(4)] near the bottom of the
package. Lithofacies B, in Fig.(l), has a much simpler

Strauss et al.

0 " -
! (a) (b) (c)

Sﬂﬂl 3 | '$
G ¢ | |
-ﬁ_-_mum 3 ﬁr ! {_ }
o= |

]SUD’L %
2000—

FIG. 3. (Color) Pressure profilgthick blue line and the derivative of the
acoustic impedance profilghin red lin@ shown in arbitrary units vs depth

for a time (a) before, (b) during, and(c) after the reflection. The arrows
indicate the direction of propagation of the pressure pulse. The profiles are
for lithofacies B and the incident pressure profile is the same as shown in
Fig. 2a).

structure with a single dominant bed size of 15 m. The quesgyencies of 20 and 10 Hz, respectivébee Fig. 2 In Fig.
tion now is whether these differences can be seen in thg(g), the incident pressure pulse is shown along with the
seismic data. For reference, the seismic frequency of a regerivative of the acoustic impedance for lithofacienve-

flection off of a 10 m bed is about 100 Hz, and off of a 100
m bed is about 10 Hz.

IIl. FORWARD MODELING OF REFLECTION
RESPONSE

A. Acoustic model

The seismic expression of the two distinct lithofacies is
examined using a hydrodynamic, finite difference, compute
modell®!! The model allows only compressional, that is,
acoustic waves. It is valid for all internal reflections and
accounts for full wave propagation and strong reflections

Since the simulation is one-dimensional, angle-dependent re-
flections are ignored. The use of this model is to justify the

approximation of the linear reflection.

The signal is propagated by the model through the wel
log profiles of density and compressional sound speed, whic
are sampledtal m intervals(subsampled from a resolution
of 0.33 m after a boxcar filterfd m is applied. It is verified

that the subsampling makes no significant difference to the

results.

let scale 50 m The pressure pulse during the interaction is
shown in Fig. 8b), and the reflected and transmitted pulses
are displayed in Fig. (8).

The CWTs of the reflected signalwith the depth scale
divided by 2, accounting for the two-way travel time of the
reflection are shown in Figs. 4 and 5. Note the significant
differences between the two lithofacies for both the 10 and

r
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The medium is represented by a Gruneisen equation of

staté*1® (EOS valid for the range of pressures in seismic

imaging. The EOS is a simple analytical relationship be-
tween the density, pressure, temperature, and energy. It de-
pends on a small number of parameters—the initial local
density; the initial sound speed; the dimensionless Gruneisen
factor y, which connects the pressure and the energy; and the
dimensionless facto®, which includes the particle velocity
contribution to the sound speed. For typical rogks1 and
S~ 1.5. For the seismic range of small acoustic pressures, the
signal propagation is independent of the detailed value of
these parameters.

The simulation is initialized so that there is an incident
pressure pulse in the form of a Mexican hat wavelet(x),

(b) lithofacies B

1.2 1.4 1.6

scale (logl0 m)

1.8

L*]

Where.a IS the scale and the funct|0na_1l form is given by Eq. FIG. 4. (Color) CWT of the hydrodynamicallyacoustically simulated seis-
(2)' Simulations are done for two different scales for themic reflection for an incident 50 m Mexican hat wavel@. Lithofacies A.

incident wavelet, 50 and 100 m, which correspond to fre<b) Lithofacies B.
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FIG. 5. (Color) CWT of the hydrodynamicallyacoustically simulated seis-
mic reflection for an incident 100 m Mexican hat wavelej.Lithofacies A.
(b) Lithofacies B. 1000

pressure {arb units)

20 Hz incident signals. The central frequency for Figh)is ) _

close to 60 Hz yet there are significant differences betwee 'G'_Gl'/i(éc."or) Reflected pressure pulse vs depth @rfiy,=1 in red and
. ) o= in blue, andb) fi,,=9 in red andf;,,,=1/16 in blue. Profiles are

Figs. 4a) and 4b), and even between Figs(ed and 3b). o/ lithofacies B. : :

The problem is that the characteristics of the CWT of the

reflected signal are dependent on the incident wavelet. A pro-

cedure needs to be derived to reduce this dependency. A key

enabler for this will be linearization of the seismic

reflection—multiple reflections will need to be neglected. Selectingfﬁnp> 1, increases the relative MR contribution. By

settingfﬁnp<1 (excluding the MR terms then restoring the
B. Contribution of multiple reflections reflected signal by multiplying the reflected signal by;}4

The hydrodynamic model is modified to have a param—one gets only the first-order reflection. The amount of mul-

. . tiple reflection can now be found by comparing the case with
eter that amplifies or attenuates the effects of multiple reflecf_ 1 (with MR) to th ef2 <1 (without MR). B
tions (MRs). This is based on changing the impedance dif- 'th;__ fooq 0 tega?h ""Pﬁ t of oul.f_ d MRy
ference(local reflectivity) between very close hydrodynamic SetiNglimp~1 We can study the efiect of ampiified M.
zones by a constant factby,,. The change in the impedan- Figure Ga) shows j[he amount (_)f multiple rgflec;hon. It
ceis obtained by very small virtual shifts of the initial density OMPares the case withy,,=1/4 (with a reduction in the

in every hydrodynamic zone. For example, in zanwith ~ Multiple reflection byfﬁnp.= 1/16) to the case withjy,=1.
initial density po;, the density is changed to, using the ~NO significant difference is sed@.4% of the energy, and no

local reflection relation, significant change in the shape of the wavelet transform
The effect of MR is amplified in Fig. ®). MR is increased
Ci Pi”Ci-1 pi-t_ G PoiTCi-1 Poi-1 (3 by afactor offf,,=9. It is compared to the case with very
Ci pitCi1 pi-1 "G poitCio1 poj-1’ little multiple reflections,fﬁnpz 1/16. Note the significant
where the local sound speegdis unchanged. Using Eq3), modification to the trailing end of the pulse due to the inter-
pi can be expressed in terms @f;, finp, andp;_;, where  bed reflections. The leading edge of the pulse has little modi-
we start fromi =1 andp;=po ;. The first-order contribution fication due to the interbed reflections. Therefore, even for a
to the reflected signal is changed by a factgy,, but the — case with moderate amounts of multiple reflections, the lead-
higher order MR contributions differ by additional factors of ing edge of a package of reflections can be predicted by

fﬁnp. Selectingfﬁnp<1 can arbitrarily reduce the MR terms. using only the first-order, linear, reflections.
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IV. INVERSE MODEL whereu;,(x) is the basic waveletscaled by 2 and shifted
by 2'n), j is the scale level, and the shift number. They
satisfy orthogonality and completeness relations. The wave-

A linear scattering approximation is made since the efjet transform of a functionf(x), is defined as
fect of multiple reflections can be neglected for the cases

being considered. This allows the reflection response to be § _ fm U (X)) F(x)dX. @)
written as a convolution between the incident signal and the SR

derivative of the acoustic impedance. A change of scale foétart with the expansions

the acoustic impedance is necessary to account for the two- '

way travel time. ,

The acoustic impedance is divided into small intervals gac(x):jzn AjnUjn(X), ©)
dx. Express the reflection respon&éx) in terms of the
incident signal #(x) and the acoustic impedance jump "
dg.d{X) in the intervalsdx,

= dgadX') Co ,

RX)= |  —— 55— ¥(X —X), 4) _ _ _ .

— GadX') C(X') where integration of Eq9) overx yields an explicit expres-
whereg,{(x) in the impedance and its spatial dimension isSion for the scaledx—2x, impedancega(x). Apply the
scaled by a factor of 2, so that— 2x. This scaling is a time orthogonal relation to calculate,, as a wavelet transform,
delay due to the fact that the input signal and the reflected o e
signal travel the intervatix twice. In Eq. (4) include the bjnzf WR(X JUi(X")dx". (11)
rescaling of the intervadx’ by the local change in the sound
speeddx’ —dx’cqy/c(x"), wherec(x’) andcy are the local  The relation between;, andb;, can be written as
and the average acoustic sound speed in the reflection range,

A. Analytical expression for reflection response

d

R<X):,Zn bjnUjn(X), (10)

respectively. Assume in Ed4) that the variation in sound bjnZZ Min,j'n'@jrn/ (12
speed and in the acoustic impedance is small, consistent with n
the linear approximation then inverted to give
l 9
_ r_ ! ! ! -1
R(X)_ 90 JLOC l,/I(X X)gac(x )dX ) (5) ajn=j2n Mjn,j’n’bj'n' . (13)

wheredg,.=g,. dX, g..is the impedance derivative, agd  The coupling matrixM is
is the average impedance in the reflected range. Assuming . .
that the incoming function is a wavelet, (x) with scale Mjn,j’n’:f dx “J*n(x)f X' U1 (X)) (X' —X).
length o obtain, —w _e
(14)

1 ©
R(x)= —f Gad X ) Yo (X" —x)dX". (6)  Write the matrixM as a double wavelet transform. The first
o /- transform is
In Eq. (6) the reflection function is expressed as a wavelet Y
transform of the scaled impedance derivative. l}j,n,(x):j dX Ujrnr (X)) iy (X' —X), (15)
To test the validity of the analytical relation, E@), its -

prediction of the reflection response is compared to the hygnerex appears as a parameter that shifts the incoming sig-

drodynamic result of Sec. Ill, which includes all the effects 5| g10ng the spatial axis. The second transform exprédses
ignored in the analytic treatment. When this is done, no sig-

) . ; o . _ as a wavelet transform af: .., (x),
nificant difference is found. This is further confirmation that 0 (X)
the linear approximation is justified.

pp j Mjn,j,n,(x):f

ee]

ocdx Un(X) fpj,n,(x). (16)

B. Discret let transf [ del . . .
IScrete wavelet fransform Inverse mode Calculateb;, by using Eq.(11) and invert the matrixv

In this section, deconvolution methodasing an oth-  given by Eqs(15) and(16). Insert the results into Eq13),
onormal discrete wavelet transform methade applied to to get the impedance coefficieaf, . Putting thesea;, into
solve the inverse problem. Starting with E), which ex-  Eq.(9), then integrating ovex gives the inverse solution for
presses the reflectidR(x) as a convolution between the im- the scaledx— 2x, impedanceg,(x).

pedance derivativg,{x) and the incoming signak,(x), an In order to have the most compact representation of the
orthogonal wavelet basis is used to invert E).and obtain  signal in the wavelet transform space, the third-order coiflets
the impedance,{X) as a function of the reflectioR(x). are chosen® They are an orthonormal family of wavelets in
The wavelet basis functions,(x) are a finite intervallL = 2Jo, wherej, is an integer. As shown in
1 «—2in Fig. 7, they closely resemble a typical seismic wavelet.
Ui (X)= —u( ) ) The expansion of a given signal requires the inclusion of
. Joi L 2 wavelet states that extend out of the spatial rahg@hese
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states are called boundary states. Define the nNymof

. 50
statesu;j,(x) by the amount of the wavelet in the range o

1.2 1.4 1.6

scale (Togl0 m)

b3

L
— ’ * ’ !
Niﬂ_ J’O ujn(x )ujn(x )dX : (17) FIG. 8. (Color) CWT of the DWT inversion of the simulated seismic reflec-
tion for an incident 50 m Mexican hat waveléd) Lithofacies A.(b) Litho-

. . facies B.
States withN;,~1 are almost completely in the rangeand acies

are nearly orthogonal states. Stafég <1 are almost ex-

cluded from rangé.. Boundary states can be included in the

expansion if the part of the wavelet out of the spatial ralnge The wavelet transform is taken of the incoming and re-

has a small overlap with the signals. Many states with smalflected signals. The coefficients are reduced to the ones

norms have a small overlap with the incoming and reflectedvhich are within the rangf yin<j<jmax, and haveN;,

signals and do not contribute to the impedance convergence:Ng. The inverse wavelet transform is then taken and com-

For decomposition of a signal using a reduced wavelet separed to original signals to check that there is reasonable

only include boundary states with noriN;,, larger than a agreement. This verifies that the reduction in the coefficients

selected valueN,, where the value oN, depends on the will not affect the inversion result. The decomposition of the

rangeL. The smallelL is, the more boundary states need toreflected signal gives the coefficiertty, of Eq. (11). For

be included. TypicallyNy~0.5—0.8. For largé few bound- both L=1024 or 2048 m, the number of reduced states is

ary states need to be included, leaving nearly orthogonatlose to 45.

states withNy~ 1. Reduction ofNg by a factor of 2 has little Obtain the matriXM by numerically applying the double

effect on the convergence, but more dramatic reductions iwavelet transform given by Eq¢15) and (16). The matrix

N, may cause too many boundary states with small norms t is reduced by using only the coefficients used lgy.

be included and convergence is affected. Inverting the reducet matrix to getM ~*, then substituting
For the two characteristic lithofaciels=1024 and 2048 the result into Eq(13) along with the coefficient®;, de-

m are considered. To obtain convergence of the impedance nived from the decomposition of the reflected signal gives the

an intervalL=1024 m boundary states with norm greater coefficientsa;, . Using Eq.(9). and integrating ovex, leads

thanNg~0.8 must be included. Selectihg=2048 m allows to the inverse solution for the impedangg(x).

a more restricted set with a norm greater thdg~0.99, This DWT inversion is applied to the acoustic simulation

which is almost orthogonal in the intervil of the seismic reflection off the two lithofacies. The CWT is
The largest scale level,,, with scale 2max needed is then taken of the inverted signal. The results for the simula-

(logL/log 2)—1. If L=1024 or 2048 m, thef,,,=9 or 10, tion using the 50 m20 Hz) incident wavelet are shown Fig.

respectively. For an incoming wavelet with scale length, 8, and for the simulation using the 100 (10 Hz) incident

=50 m, one will need to retain scales with scales greatewavelet are shown in Fig. 9. Note the similarity of both

than or equal td,,=6. So the scale length levels included figures to Fig. 1, the CWT of the well log data. There is a

in the inversion arg ,in<j<Jmax- INCreasing or decreasing small attenuation in Fig. 8 of the 20 Hz CWT at the smallest

the scale lengthg, of the incoming signal requires an in- scale when compared to the well log CWT in Fig. 1. This is

crease or reduction in the lower levigl;,, respectively. caused by the finite bandwidth of the 20 Hz data. There was
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FIG. 9. (Color) CWT of the DWT inversion of the simulated seismic reflec- 400
tion for an incident 100 m Mexican hat waveldét) Lithofacies A. (b)
Lithofacies B.
00 —
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not enough reflected energy of these small scales. The inveriG. 10. (Colon Smoothed30 m boxcay derivative of the acoustic imped-
sfon could not restore these scales wihout ampiing noiscTe 1 SbLEY Ui o Septies combere b e e st
This attenuation, in Fig. 9, extends to slightly larger scales Irlmd(b) FT inversion method (S/N13.8 dB). Profiles are for lithofacies B.
the CWT of the 10 Hz data. There is a significant improve-
ment when the inverted CWTs are compared to the CWTs of
the reflected signal shown in Figs. 4 and 5. There is much ~
less imprint of the incident wavelet. Where there is signifi- , 1 »RK)

cant energy in the inverted CWTSs, it has the same pattern as Jad X)= ;R fo (k) e k). (19
the CWT of the well log data. Since each seismic data set 7

will have a different wavelet and the same dataset may evehhe impedance,{x) is obtained by integrating E¢19).
have a different wavelet for different depths due to inelastic ~ In order to evaluate Eq19) for the numerically(hydro-
attenuation, this inversion process will allow a normalizationdynamically simulated signals, the Fourier transform of the
of the CWT of the reflected signals so that they can be comMexican hat wavelet,

pared to the well log calibration database. J(K=Ay o 7 K2 e (oki2?, (20)

is used along with the Fourier transform of the simulated

Although the DWT inversion(deconvolution works  reflection responseéx(x).
well, there is obviously the more common Fourier transform  To carry out the integration in E419), a discrete mesh,
method for accomplishing the same task. This section wilk,=nsx/L, is used, where the reflection signal differs from
outline this method and show that the performance of theero in the range €@x<L andn are integer numbers. For the
DWT method is superior. reflected signals under consideratibry 1000 m is selected.

Taking the Fourier transform in E@5), A cutoff is introduced in the integration &f,,,=27/\, where
N=~o. This is needed so tha& modes with little reflected
energy are not amplified. This keeps noise from being am-

C. Fourier transform inverse model

9ad k) =R(K)/ ¢ (K), (18 plified to a point where it can dominate the reflected signal.
This is analogous to thg,;, cutoff applied in the DWT.

the inverse Fourier transform of E¢L8) gives the imped- It is recognized that this application of the FT deconvo-

ance derivative lution is not the most sophisticated. Most times a noise factor
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(a) lithofacies A

0 (a) lithofacies A (b) lithofacies B

1.8
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500 scale (logl0 m)
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FIG. 11. Wavelets derived from the real seismic data and well log shown as (b} lithofacies B
amplitude(arbitrary unit3 vs depth.(a) Lithofacies A.(b) Lithofacies B. o

is used and the spectrum is tapered. It was decided to use this
implementation so that a fair comparison can be made to the
DWT deconvolution, which is equally unsophisticated. This
being said, tests were also done using a more sophisticated
FT approach. Although the sidelobe oscillations were re-
duced, a greater high frequency deconvolution artifact ap-
peared in the main signal. 1 1.2 14 16 18

The results of a deconvolution done with both methods scale (log10 m)
are shown in Figs. 1@) and 1Q@b). The signal-to-nois€S/N)
ratio for the FT is 13.8 dB compared to 22.1 dB for the F_IG. 12._ (Color) CWT of _the DWT inversion of the real seismic data)
DWT. The deconvolution artifacts are also more localized for-""°fctes A (b) Lithofacies B.
the DWT. This reduces the interference of multiple stacked
packages of reflectors. The DWT is, therefore, the preferred
method for the deconvolution.

Fig. 12. The response is quite similar to the wavelet trans-
form of the well log derivative acoustic impedandgg. 1).

V. APPLICATION OF INVERSE MODEL TO REAL This is really quite surprising considering the quality of the
SEISMIC DATA seismic data. This multiscale character appears to be much

The DWT i del i lied h | seismi more robust to acquisition and processing differences than
€ inverse model is applied to the real seismiC, antional guantitative interpretation.

data corresponding to the two characteristic cases. First, the
incoming wavelets for the two cases are derived. They are

estimated by standard wavelet estimation techniques used in

many seismic inversion<.A section of the seismic data of v|. ESTIMATION OF LITHOFACIES PROBABILITY
about a second1500 m is used along with the compres-
sional sonic velocity and density well log, corresponding to
the seismic data. The derived wavelet, when convolved with  The final component of this project is the collection of a
the well log reflectivity matches the seismic data to withinpopulation of well logs, classification of intervals of those
about 12 dB. Care is taken that the interval corresponding tavell logs according to their lithofacies group, and calculation
the characteristic cases does not have a dominant effect ai the wavelet transforms of the derivatives of the acoustic
the derivation of the wavelets. The wavelets for the twoimpedance for the same intervals. After examining the wave-
cases are shown in Fig. 11. Note the differences betweelet transforms of each lithofacies population, a suitable pa-
them. These differences make the CWT of the reflected sigrameter of the wavelet transform is chosen which discrimi-
nals very difficult to compare to each other and to the wellnates the lithofacies. The chosen parameter was the log of
log database because of the imprint of the wavelets on thiéhe average scale, that is bed thicknéss, Histograms for
reflected signal. The two cases have seismic data from tweach lithofacies are plotted and fit to a Gaussian. The result is
separate seismic surveys, with different acquisition and proshown in Fig. 13. These probability distributions are the con-
cessing parameters. It is known that the processing was nditional probability of the observing a multiscale character in
amplitude preserving. A gas amplitude anomaly, proven bythe seismic given that one knows the lithofacies,
the drill bit, was not seen on these data. It was seen of({o)|lithofacies). There is a reasonable size population for
another dataset that had both superior acquisition and pre@ach lithofacies group—11 samples for lithofacies A and 15
cessing. The bandwidth of this dataset was also much bettesamples for lithofacies B. These samples are independent
The DWT inversion of the real reflection seismic is shown inand come from 14 different wells.

A. Calibration using wells
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based, quantitative interpretation does not work well. This
can be done even if the bandwidth of the seismic data is not
good enough to resolve the dominant bed thickness of the
lithofacies group. The analytic DWT inverse formula for the
wavelet transform of the acoustic impedance given the seis-
mic reflection response has been justified by the forward
modeling. A linear approximation enables the simple inverse
formula and is justified by the insignificance of multiple re-
flections. The DWT performs better than the FT, having
fewer deconvolution tail artifacts. Real seismic data show the
_ response predicted by the forward modeling. When this is
0 0.5 ! 1.3 2 combined by the conditional probabilities derived from a
<0> (loglQ m) population of well logs, the probability of a lithofacies group
FIG. 13. (Color) Conditional probabilities of scale given the lithofaci 's reliably estimated.
Hist.ogra.rrgs (;r(:er)theo\?vellll(ljonga distributions, lines are Gauseian distributions fit | FUrther work needs to be done. The performance of the
to the histograms. The conditional probability of lithofacies A is shown in DWT can be improved. The application of this technology is
red and lithofacies B is shown in blue. The values of the average geale,  still crude, especially with respect to how it handles noise.
Chown a5 large biack circles abelec(® lihofadies A and ithofasies.  OTe Sophisticated approaches need to be implemented and
B. their performance with respect to noise needs to be quanti-
fied.

probability

B. Bayesian inversion for lithofacies probability

The issue with using the conditional probabilities,
P({o)|lithofacies), is that one measures the multiscale char-,
acter of the seismig,o), and wishes to know the probability ACKNOWLEDGMENTS
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