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Geologic lithofacies identification using the multiscale character
of seismic reflections
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~Received 27 January 2003; accepted 28 July 2003!

A forward acoustic model shows that geologic lithofacies groups can be identified by the character
of the wavelet transform of their seismic reflection response even for incident signals with a
wavelength much larger than the dominant bed thickness. The same model shows that multiple
interbed reflections can be neglected. This allows the use of an analytical relation of the linear
reflection response expressed as a convolution between the incident signal and the scaled derivative
of the acoustic impedance. The relation is applied to solve the inverse problem for the acoustic
impedance, using orthogonal discrete wavelet transform~DWT! and Fourier transform methods;
good agreement is obtained between the well log wavelet spectrum and both the forward modeled
seismic data and the real seismic data. It is found that the DWT approach is superior, having a better
signal-to-noise ratio and more localized deconvolution artifacts. A population of well logs
containing a wide range of lithologies and bed thicknesses, which are categorized into lithofacies
groups, is used to define the conditional probability of a wavelet transform response given a
lithofacies group. These conditional probabilities are used to estimate the lithofacies probability
given a seismic wavelet response via a Bayesian inversion. ©2003 American Institute of Physics.
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I. INTRODUCTION

The multiscale character of geologic sedimentation a
how it manifests itself in the seismic reflection record h
been studied by many authors. This has ranged from ex
ining the frequency distribution of beds,1–3 to examining the
theoretic reflection response of statistically generated
sequences,4 to statistical correlation of hyperspectral seism
attributes,5 and log response using neural networks.

There has also been a recent body of research that
appeared in the image processing and target recognition
erature that has used wavelet-based techniques to an
transient signals.6 It has also been recognized that wave
analysis is the best and most fundamental way to analy
multiscale signal.7–9

This article recognizes the multiscale character of de
sitional sequences that has been examined by many aut
and the efficacy of wavelet decompositions in analyz
multiscale signals. It establishes the fundamental relation
between the wavelet decomposition of the acoustic pro
ties of the rock sequences and the wavelet decompositio
the seismic reflection response. This relationship is inve
so that the wavelet decomposition of the rocks can be de
mined from the wavelet decomposition of the seismic refl
tion response. It is found that even very low frequency se
mic data~10 Hz! can distinguish rock packages that have
dominant bed thickness that would require frequenc
greater than 60 Hz to resolve. A population of well logs
analyzed to determine the characteristics of their wav

a!Electronic mail: michael.e.glinsky@bhpbilliton.com
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transformations given the vertical distribution of their gro
lithologies and bed thicknesses, or lithofacies. The inve
relationship along with the knowledge of the multiscale ch
acter of stratigraphy, allows one to analytically determine
probability of a lithofacies given low frequency seismic da

An important consideration is the impact of noise on t
inversion of the seismic reflection response and the ability
identify the lithofacies. Coherent noise is very prominent
real seismic data. This noise must be taken into accoun
the inversion or it will be unstable and the results unreliab
Significant steps are taken in the inversion to deal with th
There is an imbedded assumption of randomness in th
methods. Since noise in real seismic data has a signifi
coherent component, the inversion algorithms were app
to the real seismic data to see how well the wavelet spect
of the rocks could be recovered. A very good result is fou

The difference between this and previous methods lie
its rational, model-based approach. Attempts at statist
correlation, that is assay, of seismic response to underly
geology suffer from~1! limited data where both a well log
and good seismic exist,~2! biased data where high net pa
sands are preferentially sampled, and~3! an inability to ex-
trapolate beyond the range of sampled physical situation
rational, model-based approach allows well logs to be u
where there are no reliable seismic data, a compensatio
be made for the biased sampling, and a reliable extrapola
to be made due to the constraints of the model.

The potential business value lies in the determination
the probability of the lithofacies. Each lithofacies can
characterized in terms of the range of its volumetric prop
0 © 2003 American Institute of Physics
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ties such as net sandstone percent and sandstone pack
thickness, and reservoir flow properties such as the ratio
tween the vertical and horizontal permeabilities. A more
finitive determination of the probability of the lithofacie
will reduce the uncertainty in the recoverable volumes, w
count, and production rates. This will allow better busine
decisions to be made, creating fiscal value.

This article presents, in Sec. II, how the continuo
wavelet transform~CWT! can be used to distinguish the di
ferences in the acoustic properties of two end member lit
facies. An analytic estimate is made, in Sec. III, of the se
mic reflection response by forward modeling using
hydrodynamic, that is acoustic, computer algorithm that d
not allow for shear wave propagation.10,11 An extension of
this modeling shows that multiple interbed reflections are
important. This allows a linear approximation to be made
Sec. IV, and a relationship inverted to give the wavelet
composition of the lithofacies given the wavelet decompo
tion of the seismic reflection response. It is shown that
discrete wavelet transform12,13~DWT! gives a superior inver-
sion compared to the Fourier transform~FT!. In Sec. V, the
inversion relationship is applied to the real seismic data c
responding to the two modeled rock lithofacies. Very go
agreement is found. In Sec. VI, the conditional probability
a CWT given a lithofacies is determined from well logs, a
the probability of a lithofacies given a seismic wavelet tra
form response is calculated for the two real seismic d
examples.

II. WAVELET DECOMPOSITION OF ACOUSTIC ROCK
PROPERTIES

Two geologic lithofacies groups are the testbed for t
analysis. They have significantly different depositional en
ronments and different bed sequencing, that is different m
tiscale behavior. They will be called lithofacies A and B.
well database of 11 cases for lithofacies A and 15 cases
lithofacies B were used in this study. One characteristic c
was used from each group for the more detailed analy
Although many of the cases did not have good seismic wh
corresponded to the well log data, both characteristic ca
did have good seismic data, even though the seismic data
significant differences in acquisition, processing, and
wavelet. An approximate 250 m segment was clipped ou
the well logs~density,r, and sound speed,c) for the two
characteristic cases. A 100 m cosine taper was used to
gate the effect of the clipping. The clipping points were a
chosen in a zone of relatively weak reflectivity to also m
gate the clipping effect. It was verified that the clipping ma
little difference to the wavelet decomposition in the zone
interest. The derivative of the acoustic impedancerc is
shown as a function of depth for both characteristic case
Fig. 1. There is little difference between the appearance
these two signals. There are two bed sizes shown as ba
Fig. 1~a!. These will be discussed in a moment.

The CWT is then taken of the two signals to highlig
the differences between lithofacies A and B. The CWT
applied to a signalc(x) by a convolution
Downloaded 14 Oct 2003 to 192.58.150.40. Redistribution subject to A
ging
e-
-

ll
s

s

-
-

s

t
n
-

i-
e

r-
d
f

-
ta

s
-
l-

or
se
is.
h
es
ad
e
f

iti-
o

e
f

in
of

in

s

ĉs~x!5E
0

`

dx8c~x8!us~x82x!, ~1!

whereus(x) is a set of basis functions of scales. The basis
used is the Mexican hat basis

us~x!5@12~2x2/s2!#exp~2x2/s2!, ~2!

chosen because of its similarity to the incident wavelet
typical seismic data. Once this CWT is applied to the sig
the absolute value is taken and then it is smoothed b
boxcar filter of length 30 m in thex direction. This smooth-
ing is done to match the typical depth resolution of seism
data. If this smoothing is not done, it is very difficult t
compare the response to that of the seismic data—ther
just too much detail in the well log data. The CWT of th
two signals are shown in Fig. 1. The CWT is shown as
colored image in depth,x and scale,s, where the color is
determined by the smoothed absolute magnitude of
CWT. Note the significant differences between the two lith
facies. Lithofacies A shows a complex structure of beds
size 50 m near the top of the package@note the circle labeled
a in Fig. 1~a!, and the large bar in Fig. 1~a!#, and beds of
many sizes including 20 m@note the circle labeledb in Fig.

FIG. 1. ~Color! Derivative of the well log acoustic impedance vs dep
shown as the blue line graph on the right, continuous wavelet transf
~CWT! plotted as the color image. The CWT has had a 30 m box
smoother applied in the depth direction to its absolute value. The color
is shown on the right-hand side. It ranges from 0 to the maximum valu
the CWT normalized to 1. This will be true of all CWTs that are display
in the figures.~a! Lithofacies A, the part of the CWT shown as thea circle
corresponds to beds of the size and location of the larger bar shown o
blue line graph, theb circle corresponds to the smaller bar.~b! Lithofacies
B.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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1~a!, and the small bar in Fig. 1~a!# near the bottom of the
package. Lithofacies B, in Fig. 1~b!, has a much simple
structure with a single dominant bed size of 15 m. The qu
tion now is whether these differences can be seen in
seismic data. For reference, the seismic frequency of a
flection off of a 10 m bed is about 100 Hz, and off of a 1
m bed is about 10 Hz.

III. FORWARD MODELING OF REFLECTION
RESPONSE

A. Acoustic model

The seismic expression of the two distinct lithofacies
examined using a hydrodynamic, finite difference, compu
model.10,11 The model allows only compressional, that
acoustic waves. It is valid for all internal reflections a
accounts for full wave propagation and strong reflectio
Since the simulation is one-dimensional, angle-dependen
flections are ignored. The use of this model is to justify t
approximation of the linear reflection.

The signal is propagated by the model through the w
log profiles of density and compressional sound speed, w
are sampled at 1 m intervals~subsampled from a resolutio
of 0.33 m after a boxcar filter of 1 m is applied!. It is verified
that the subsampling makes no significant difference to
results.

The medium is represented by a Gruneisen equatio
state14,15 ~EOS! valid for the range of pressures in seism
imaging. The EOS is a simple analytical relationship b
tween the density, pressure, temperature, and energy. I
pends on a small number of parameters—the initial lo
density; the initial sound speed; the dimensionless Grune
factorg, which connects the pressure and the energy; and
dimensionless factorS, which includes the particle velocity
contribution to the sound speed. For typical rocksg'1 and
S'1.5. For the seismic range of small acoustic pressures
signal propagation is independent of the detailed value
these parameters.

The simulation is initialized so that there is an incide
pressure pulse in the form of a Mexican hat wavelet,cs(x),
wheres is the scale and the functional form is given by E
~2!. Simulations are done for two different scales for t
incident wavelet, 50 and 100 m, which correspond to f

FIG. 2. Incident Mexican hat wavelets shown as amplitude~arbitrary units!
vs depth for~a! s550 m and~b! s5100 m.
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quencies of 20 and 10 Hz, respectively~see Fig. 2!. In Fig.
3~a!, the incident pressure pulse is shown along with
derivative of the acoustic impedance for lithofacies B~wave-
let scale 50 m!. The pressure pulse during the interaction
shown in Fig. 3~b!, and the reflected and transmitted puls
are displayed in Fig. 3~c!.

The CWTs of the reflected signals~with the depth scale
divided by 2, accounting for the two-way travel time of th
reflection! are shown in Figs. 4 and 5. Note the significa
differences between the two lithofacies for both the 10 a

FIG. 3. ~Color! Pressure profile~thick blue line! and the derivative of the
acoustic impedance profile~thin red line! shown in arbitrary units vs depth
for a time ~a! before, ~b! during, and~c! after the reflection. The arrows
indicate the direction of propagation of the pressure pulse. The profiles
for lithofacies B and the incident pressure profile is the same as show
Fig. 2~a!.

FIG. 4. ~Color! CWT of the hydrodynamically~acoustically! simulated seis-
mic reflection for an incident 50 m Mexican hat wavelet.~a! Lithofacies A.
~b! Lithofacies B.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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20 Hz incident signals. The central frequency for Fig. 1~b! is
close to 60 Hz yet there are significant differences betw
Figs. 4~a! and 4~b!, and even between Figs. 5~a! and 5~b!.
The problem is that the characteristics of the CWT of
reflected signal are dependent on the incident wavelet. A
cedure needs to be derived to reduce this dependency. A
enabler for this will be linearization of the seism
reflection—multiple reflections will need to be neglected.

B. Contribution of multiple reflections

The hydrodynamic model is modified to have a para
eter that amplifies or attenuates the effects of multiple refl
tions ~MRs!. This is based on changing the impedance d
ference~local reflectivity! between very close hydrodynam
zones by a constant factorf imp . The change in the impedan
ceis obtained by very small virtual shifts of the initial dens
in every hydrodynamic zone. For example, in zonei with
initial density r0,i , the density is changed tor i using the
local reflection relation,

ci r i2ci 21 r i 21

ci r i1ci 21 r i 21
5 f imp

ci r0,i2ci 21 r0,i 21

ci r0,i1ci 21 r0,i 21
, ~3!

where the local sound speedci is unchanged. Using Eq.~3!,
r i can be expressed in terms ofr0,i , f imp , andr i 21 , where
we start fromi 51 andr15r0,1. The first-order contribution
to the reflected signal is changed by a factorf imp , but the
higher order MR contributions differ by additional factors
f imp

2 . Selectingf imp
2 !1 can arbitrarily reduce the MR terms

FIG. 5. ~Color! CWT of the hydrodynamically~acoustically! simulated seis-
mic reflection for an incident 100 m Mexican hat wavelet.~a! Lithofacies A.
~b! Lithofacies B.
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Selectingf imp
2 .1, increases the relative MR contribution. B

setting f imp
2 !1 ~excluding the MR terms!, then restoring the

reflected signal by multiplying the reflected signal by 1/f imp

one gets only the first-order reflection. The amount of m
tiple reflection can now be found by comparing the case w
f imp51 ~with MR! to the casef imp

2 !1 ~without MR!. By
setting f imp.1 we can study the effect of amplified MR.

Figure 6~a! shows the amount of multiple reflection.
compares the case withf imp51/4 ~with a reduction in the
multiple reflection byf imp

2 51/16) to the case withf imp51.
No significant difference is seen~2.4% of the energy, and no
significant change in the shape of the wavelet transfor!.
The effect of MR is amplified in Fig. 6~b!. MR is increased
by a factor off imp

2 59. It is compared to the case with ver
little multiple reflections, f imp

2 51/16. Note the significant
modification to the trailing end of the pulse due to the int
bed reflections. The leading edge of the pulse has little mo
fication due to the interbed reflections. Therefore, even fo
case with moderate amounts of multiple reflections, the le
ing edge of a package of reflections can be predicted
using only the first-order, linear, reflections.

FIG. 6. ~Color! Reflected pressure pulse vs depth for~a! f imp
2 51 in red and

f imp
2 51/16 in blue, and~b! f imp

2 59 in red andf imp
2 51/16 in blue. Profiles are

for lithofacies B.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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IV. INVERSE MODEL

A. Analytical expression for reflection response

A linear scattering approximation is made since the
fect of multiple reflections can be neglected for the ca
being considered. This allows the reflection response to
written as a convolution between the incident signal and
derivative of the acoustic impedance. A change of scale
the acoustic impedance is necessary to account for the
way travel time.

The acoustic impedance is divided into small interv
dx. Express the reflection responseR(x) in terms of the
incident signal c(x) and the acoustic impedance jum
dgac(x) in the intervalsdx,

R~x!5E
2`

` dgac~x8!

gac~x8!

c0

c~x8!
c~x82x!, ~4!

wheregac(x) in the impedance and its spatial dimension
scaled by a factor of 2, so that.x→2x. This scaling is a time
delay due to the fact that the input signal and the reflec
signal travel the intervaldx twice. In Eq. ~4! include the
rescaling of the intervaldx8 by the local change in the soun
speed,dx8→dx8c0 /c(x8), wherec(x8) andc0 are the local
and the average acoustic sound speed in the reflection ra
respectively. Assume in Eq.~4! that the variation in sound
speed and in the acoustic impedance is small, consistent
the linear approximation

R~x!5
1

g0
E

2`

`

c~x82x!gac8 ~x8!dx8, ~5!

wheredgac5gac8 •dx, gac8 is the impedance derivative, andg0

is the average impedance in the reflected range. Assum
that the incoming function is a waveletcs(x) with scale
lengths obtain,

R~x!5
1

g0
E

2`

`

gac8 ~x8!cs~x82x!dx8. ~6!

In Eq. ~6! the reflection function is expressed as a wave
transform of the scaled impedance derivative.

To test the validity of the analytical relation, Eq.~6!, its
prediction of the reflection response is compared to the
drodynamic result of Sec. III, which includes all the effec
ignored in the analytic treatment. When this is done, no s
nificant difference is found. This is further confirmation th
the linear approximation is justified.

B. Discrete wavelet transform inverse model

In this section, deconvolution methods~using an oth-
onormal discrete wavelet transform method! are applied to
solve the inverse problem. Starting with Eq.~6!, which ex-
presses the reflectionR(x) as a convolution between the im
pedance derivativegac8 (x) and the incoming signalcs(x), an
orthogonal wavelet basis is used to invert Eq.~6! and obtain
the impedancegac(x) as a function of the reflectionR(x).

The wavelet basis functionsujn(x) are

ujn~x!5
1

A2 j
uS x22jn

2 j D , ~7!
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whereujn(x) is the basic wavelet~scaled by 2j and shifted
by 2jn), j is the scale level, andn the shift number. They
satisfy orthogonality and completeness relations. The wa
let transform of a function,f (x), is defined as

f̂ jn5E
2`

`

ujn~x8! f ~x8!dx8. ~8!

Start with the expansions,

gac8 ~x!5(
jn

ajnujn~x!, ~9!

and

R~x!5(
jn

bjnujn~x!, ~10!

where integration of Eq.~9! overx yields an explicit expres-
sion for the scaled,x→2x, impedancegac(x). Apply the
orthogonal relation to calculatebjn as a wavelet transform,

bjn5E
2`

`

R~x8!ujn* ~x8!dx8. ~11!

The relation betweenajn andbjn can be written as

bjn5(
jn

M jn, j 8n8aj 8n8 , ~12!

then inverted to give

ajn5(
jn

M jn, j 8n8
21 bj 8n8 . ~13!

The coupling matrixM is

M jn, j 8n85E
2`

`

dx ujn* ~x!E
2`

`

dx8uj 8n8~x8!cs~x82x!.

~14!

Write the matrixM as a double wavelet transform. The fir
transform is

ĉ j 8n8~x!5E
2`

`

dx8uj 8n8~x8!cs~x82x!, ~15!

wherex appears as a parameter that shifts the incoming
nal along the spatial axis. The second transform expresseM

as a wavelet transform ofĉ j 8n8(x),

M jn, j 8n8~x!5E
2`

`

dx ujn* ~x!ĉ j 8n8~x!. ~16!

Calculatebjn by using Eq.~11! and invert the matrixM
given by Eqs.~15! and ~16!. Insert the results into Eq.~13!,
to get the impedance coefficientajn . Putting theseajn into
Eq. ~9!, then integrating overx gives the inverse solution fo
the scaled,x→2x, impedancegac(x).

In order to have the most compact representation of
signal in the wavelet transform space, the third-order coifl
are chosen.16 They are an orthonormal family of wavelets
a finite intervalL52 j 0, where j 0 is an integer. As shown in
Fig. 7, they closely resemble a typical seismic wavelet.

The expansion of a given signal requires the inclusion
wavelet states that extend out of the spatial rangeL. These
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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states are called boundary states. Define the normNjn of
statesujn(x) by the amount of the wavelet in the rangeL,

Njn5E
0

L

ujn~x8!ujn* ~x8!dx8. ~17!

States withNjn'1 are almost completely in the rangeL and
are nearly orthogonal states. StatesNjn!1 are almost ex-
cluded from rangeL. Boundary states can be included in t
expansion if the part of the wavelet out of the spatial rangL
has a small overlap with the signals. Many states with sm
norms have a small overlap with the incoming and reflec
signals and do not contribute to the impedance converge
For decomposition of a signal using a reduced wavelet
only include boundary states with norm,Njn , larger than a
selected valueN0 , where the value ofN0 depends on the
rangeL. The smallerL is, the more boundary states need
be included. Typically,N0'0.5– 0.8. For largeL few bound-
ary states need to be included, leaving nearly orthogo
states withN0'1. Reduction ofN0 by a factor of 2 has little
effect on the convergence, but more dramatic reduction
N0 may cause too many boundary states with small norm
be included and convergence is affected.

For the two characteristic lithofacies,L51024 and 2048
m are considered. To obtain convergence of the impedanc
an intervalL51024 m boundary states with norm grea
thanN0'0.8 must be included. SelectingL52048 m allows
a more restricted set with a norm greater thanN0'0.99,
which is almost orthogonal in the intervalL.

The largest scale levelj max with scale 2j max needed is
(logL/log 2)21. If L51024 or 2048 m, thenj max59 or 10,
respectively. For an incoming wavelet with scale length,s
550 m, one will need to retain scales with scales grea
than or equal toj min56. So the scale length levels include
in the inversion arej min<j<jmax. Increasing or decreasin
the scale length,s, of the incoming signal requires an in
crease or reduction in the lower levelj min , respectively.

FIG. 7. Third-order coiflet of scale levelj 56 shown as amplitude~arbitrary
units! vs depth.
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The wavelet transform is taken of the incoming and
flected signals. The coefficients are reduced to the o
which are within the rangej min<j<jmax, and haveNjn

.N0 . The inverse wavelet transform is then taken and co
pared to original signals to check that there is reasona
agreement. This verifies that the reduction in the coefficie
will not affect the inversion result. The decomposition of t
reflected signal gives the coefficientsbjn of Eq. ~11!. For
both L51024 or 2048 m, the number of reduced states
close to 45.

Obtain the matrixM by numerically applying the double
wavelet transform given by Eqs.~15! and ~16!. The matrix
M is reduced by using only the coefficients used forbjn .
Inverting the reducedM matrix to getM 21, then substituting
the result into Eq.~13! along with the coefficientsbjn de-
rived from the decomposition of the reflected signal gives
coefficientsajn . Using Eq.~9!. and integrating overx, leads
to the inverse solution for the impedancegac(x).

This DWT inversion is applied to the acoustic simulatio
of the seismic reflection off the two lithofacies. The CWT
then taken of the inverted signal. The results for the simu
tion using the 50 m~20 Hz! incident wavelet are shown Fig
8, and for the simulation using the 100 m~10 Hz! incident
wavelet are shown in Fig. 9. Note the similarity of bo
figures to Fig. 1, the CWT of the well log data. There is
small attenuation in Fig. 8 of the 20 Hz CWT at the smalle
scale when compared to the well log CWT in Fig. 1. This
caused by the finite bandwidth of the 20 Hz data. There w

FIG. 8. ~Color! CWT of the DWT inversion of the simulated seismic refle
tion for an incident 50 m Mexican hat wavelet.~a! Lithofacies A.~b! Litho-
facies B.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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not enough reflected energy of these small scales. The in
sion could not restore these scales without amplifying no
This attenuation, in Fig. 9, extends to slightly larger scales
the CWT of the 10 Hz data. There is a significant improv
ment when the inverted CWTs are compared to the CWT
the reflected signal shown in Figs. 4 and 5. There is m
less imprint of the incident wavelet. Where there is sign
cant energy in the inverted CWTs, it has the same patter
the CWT of the well log data. Since each seismic data
will have a different wavelet and the same dataset may e
have a different wavelet for different depths due to inelas
attenuation, this inversion process will allow a normalizati
of the CWT of the reflected signals so that they can be co
pared to the well log calibration database.

C. Fourier transform inverse model

Although the DWT inversion~deconvolution! works
well, there is obviously the more common Fourier transfo
method for accomplishing the same task. This section
outline this method and show that the performance of
DWT method is superior.

Taking the Fourier transform in Eq.~5!,

ĝac8 ~k!5R̂~k!/ĉs~k!, ~18!

the inverse Fourier transform of Eq.~18! gives the imped-
ance derivative

FIG. 9. ~Color! CWT of the DWT inversion of the simulated seismic refle
tion for an incident 100 m Mexican hat wavelet.~a! Lithofacies A. ~b!
Lithofacies B.
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The impedancegac(x) is obtained by integrating Eq.~19!.
In order to evaluate Eq.~19! for the numerically~hydro-

dynamically! simulated signals, the Fourier transform of th
Mexican hat wavelet,

ĉs~k!5A0 s Ap k2 e2(sk/2)2, ~20!

is used along with the Fourier transform of the simulat
reflection response,R(x).

To carry out the integration in Eq.~19!, a discrete mesh
kn5np/L, is used, where the reflection signal differs fro
zero in the range 0,x,L andn are integer numbers. For th
reflected signals under consideration,L'1000 m is selected
A cutoff is introduced in the integration atkmax52p/l, where
l's. This is needed so thatk modes with little reflected
energy are not amplified. This keeps noise from being a
plified to a point where it can dominate the reflected sign
This is analogous to thej min cutoff applied in the DWT.

It is recognized that this application of the FT deconv
lution is not the most sophisticated. Most times a noise fac

FIG. 10. ~Color! Smoothed~30 m boxcar! derivative of the acoustic imped
ance in arbitrary units vs depth~red! compared to the inverted simulate
seismic reflection~green! for ~a! DWT inversion method (S/N522.1 dB),
and~b! FT inversion method (S/N513.8 dB). Profiles are for lithofacies B
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is used and the spectrum is tapered. It was decided to use
implementation so that a fair comparison can be made to
DWT deconvolution, which is equally unsophisticated. Th
being said, tests were also done using a more sophistic
FT approach. Although the sidelobe oscillations were
duced, a greater high frequency deconvolution artifact
peared in the main signal.

The results of a deconvolution done with both metho
are shown in Figs. 10~a! and 10~b!. The signal-to-noise~S/N!
ratio for the FT is 13.8 dB compared to 22.1 dB for t
DWT. The deconvolution artifacts are also more localized
the DWT. This reduces the interference of multiple stack
packages of reflectors. The DWT is, therefore, the prefer
method for the deconvolution.

V. APPLICATION OF INVERSE MODEL TO REAL
SEISMIC DATA

The DWT inverse model is applied to the real seism
data corresponding to the two characteristic cases. First
incoming wavelets for the two cases are derived. They
estimated by standard wavelet estimation techniques use
many seismic inversions.17 A section of the seismic data o
about a second~1500 m! is used along with the compres
sional sonic velocity and density well log, corresponding
the seismic data. The derived wavelet, when convolved w
the well log reflectivity matches the seismic data to with
about 12 dB. Care is taken that the interval correspondin
the characteristic cases does not have a dominant effec
the derivation of the wavelets. The wavelets for the t
cases are shown in Fig. 11. Note the differences betw
them. These differences make the CWT of the reflected
nals very difficult to compare to each other and to the w
log database because of the imprint of the wavelets on
reflected signal. The two cases have seismic data from
separate seismic surveys, with different acquisition and p
cessing parameters. It is known that the processing was
amplitude preserving. A gas amplitude anomaly, proven
the drill bit, was not seen on these data. It was seen
another dataset that had both superior acquisition and
cessing. The bandwidth of this dataset was also much be
The DWT inversion of the real reflection seismic is shown

FIG. 11. Wavelets derived from the real seismic data and well log show
amplitude~arbitrary units! vs depth.~a! Lithofacies A.~b! Lithofacies B.
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Fig. 12. The response is quite similar to the wavelet tra
form of the well log derivative acoustic impedance~Fig. 1!.
This is really quite surprising considering the quality of t
seismic data. This multiscale character appears to be m
more robust to acquisition and processing differences t
conventional quantitative interpretation.

VI. ESTIMATION OF LITHOFACIES PROBABILITY

A. Calibration using wells

The final component of this project is the collection of
population of well logs, classification of intervals of thos
well logs according to their lithofacies group, and calculati
of the wavelet transforms of the derivatives of the acous
impedance for the same intervals. After examining the wa
let transforms of each lithofacies population, a suitable
rameter of the wavelet transform is chosen which discrim
nates the lithofacies. The chosen parameter was the lo
the average scale, that is bed thickness,^s&. Histograms for
each lithofacies are plotted and fit to a Gaussian. The resu
shown in Fig. 13. These probability distributions are the co
ditional probability of the observing a multiscale character
the seismic given that one knows the lithofacie
P(^s&u lithofacies). There is a reasonable size population
each lithofacies group—11 samples for lithofacies A and
samples for lithofacies B. These samples are indepen
and come from 14 different wells.

as

FIG. 12. ~Color! CWT of the DWT inversion of the real seismic data.~a!
Lithofacies A.~b! Lithofacies B.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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B. Bayesian inversion for lithofacies probability

The issue with using the conditional probabilitie
P(^s&u lithofacies), is that one measures the multiscale ch
acter of the seismic,̂s&, and wishes to know the probabilit
of a specific lithofacies,P(lithofaciesu^s&). The conditional
probability that we know is in the wrong order. One can u
Bayes’ Theorem to solve for the desired probability given
known conditional probability.18 Assuming that the prob
abilities of the lithofacies are equal before taking into a
count the multiscale character, the probability of a lithofac
given the multiscale character can be calculated via a Ba
sian inversion giving

P~Au^s&!5
P~^s&uA!

P~^s&uA!1P~^s&uB!
, ~21!

and

P~Bu^s&!5
P~^s&uB!

P~^s&uA!1P~^s&uB!
. ~22!

For the two characteristic cases, whose inverted seismic
flections CWT are shown in Fig. 12, the logs of the avera
scale^s& are 1.6 for lithofacies A and 1.0 for lithofacies B
The value for lithofacies A corresponds to the upper par
the package. The lower part of the package has many sc
ranging form 1.2 to 1.5. Given the observed multiscale ch
acter of the seismic for lithofacies A one would estimate
probability of it being A to be 95%. The certainty of lithofa
cies B being B, given the multiscale character of its seism
reflection, is not as great. It is 77%. These probabilities
quite useful and can be directly used in making decisi
about whether or not to drill wells.

VII. CONCLUSIONS

Geologic lithofacies are quantitatively identified by th
inversion and wavelet decomposition of the seismic refl
tion. It is robust, working on data where standard, amplitu

FIG. 13. ~Color! Conditional probabilities of scale given the lithofacie
Histograms are the well log distributions, lines are Gaussian distribution
to the histograms. The conditional probability of lithofacies A is shown
red and lithofacies B is shown in blue. The values of the average scale,^s&,
expressed in the CWT of the real seismic data displayed in Fig. 12
shown as large black circles labeled as~A! lithofacies A and~B! lithofacies
B.
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based, quantitative interpretation does not work well. T
can be done even if the bandwidth of the seismic data is
good enough to resolve the dominant bed thickness of
lithofacies group. The analytic DWT inverse formula for th
wavelet transform of the acoustic impedance given the s
mic reflection response has been justified by the forw
modeling. A linear approximation enables the simple inve
formula and is justified by the insignificance of multiple r
flections. The DWT performs better than the FT, havi
fewer deconvolution tail artifacts. Real seismic data show
response predicted by the forward modeling. When this
combined by the conditional probabilities derived from
population of well logs, the probability of a lithofacies grou
is reliably estimated.

Further work needs to be done. The performance of
DWT can be improved. The application of this technology
still crude, especially with respect to how it handles noi
More sophisticated approaches need to be implemented
their performance with respect to noise needs to be qua
fied.
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