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Automatic event picking in prestack migrated gathers using
a probabilistic neural network

Michael E. Glinsky∗, Grace A. Clark‡, Peter K. Z. Cheng∗∗, K. R. Sandhya Devi§,
James H. Robinson§, and Gary E. Ford∗∗

ABSTRACT

We describe algorithms for automating the process
of picking seismic events in prestack migrated com-
mon depth image gathers. The approach uses supervised
learning and statistical classification algorithms along
with advanced signal/image processing algorithms. No
model assumption is made, such as hyperbolic move-
out. We train a probabilistic neural network for voxel
classification using event times, subsurface points, and
offsets (ground truth information) picked manually by
expert interpreters. The key to success is using effective
features that capture the important behavior of the mea-
sured signals. We test a variety of features calculated in
a local neighborhood about the voxel under analysis. Se-
lection algorithms ensure that we use only the features
that maximize class separability. This event-picking al-
gorithm has the potential to reduce significantly the cy-
cle time and cost of 3-D prestack depth migration while
making the velocity model inversion more robust.

INTRODUCTION

There is an increasing need for 3-D prestack depth migra-
tion (PSDM). It possibly gives better resolution and place-
ment of events than conventional time migration, especially
in areas of complex structure such as near salt bodies. Unfor-
tunately, the iterative process of finding the correct velocity
model for the PSDM is a bottleneck in determining cycle time,
cost, and quality. Traveltime tomography relies on the auto-
matic or manual picking of events which are inverted to give
a correct velocity model. In this tomographic velocity model
updating process, a primary bottleneck is the manual picking
of prestack events. The velocity model inversion method that
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we use in conjunction with PSDM needs prestack picks of mi-
grated, depth-imaged gathers. The automatic picking method
described here is applied to these depth-imaged gathers that
have been migrated with a trial velocity model. If the veloc-
ity model is incorrect, over- or undermigration of the imaged
events will be observed in the migrated, depth-imaged gath-
ers, sorted in the offset-depth domain. These events are picked
using the probabilistic neural network method described in
this paper. In practice, the prestack migrated depth imaged
gathers are converted back to time-offset gathers for signal
processing purposes. This is done using the local trial veloc-
ity model to minimize the effects of depth stretching usually
seen on depth-imaged gathers. The term common image point
(CIP), used frequently in this paper, refers to these prestack
migrated depth-imaged gathers that have been converted to
time-domain gathers. The picks are used to iteratively update
the velocity model, which forms the next set of prestack mi-
grated gathers. The number of picked events and iterations are
determined by economic and business factors. Increasing ei-
ther the number of picked events or iterations could lead to
a more robust and accurate inversion. By automating a signif-
icant portion of this picking process, we hope to enable and
improve PSDM.

The conventional automatic picking of events on prestack
migrated gathers is complicated because of the low S/N ratio.
This leads to loop skipping, since most conventional picking
algorithms follow the noise from one local maximum to another
and skip to another phase of the wavelet (2π from the original).
This is very undesirable for the velocity updating algorithms
and must be corrected manually.

The automatic event-picking technique we describe uses ad-
vanced algorithms from the areas of automatic target recogni-
tion, computer vision, and signal/image processing. Whenever
possible, prior knowledge of the geophysics is incorporated
into the processing algorithms to ensure physical relevance
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and to enhance the ability to obtain meaningful results. Su-
pervised learning methodology is used to train a probabilistic
neural network (PNN) (Specht, 1990b) for voxel classification
using manually picked event times. The key to success is in
using effective features that capture the important behavior
of the measured signals. The algorithm uses a variety of 2-D
features calculated in a neighborhood about the voxel under
analysis. These features are designed to capture the character
of the event for which expert pickers look.

An interesting aspect of the proposed algorithm is the use of
proximity features to limit the event search space to only those
events specified as important by the analyst. The proposed al-
gorithm generally picks all possible events in a panel of com-
mon prestack migrated-depth image point gathers (CIPs). It
is possible to search only for those primary reflections of in-
terest by exploiting knowledge provided by the expert analyst.
The algorithm uses special proximity features to measure the
distance of the voxel to the nearest event picked by the ana-
lyst. This creates a proximity mask that constrains the search to
only those important events picked by the analyst. This process
significantly reduces the confusion involved with interpreting
the final picks and ensures that the final picked CIP panels are
useful. Note that the use of the proximity features is optional.

This work is applied research, with novelty over past work
(Lu, 1982; Taner, 1988; Geerlings and Berkhout, 1989; Lu and
Cheng, 1990; Veezhinathan and Wagner, 1990; Aminzadeh and
Simaan, 1991; Kemp et al., 1992; McCormack et al., 1993; Chu
and Mendel, 1994; Woodham et al., 1995) primarily in the cre-
ative combination of algorithms from a variety of disciplines
with some new algorithms to solve a difficult applied problem.
A review of past work is beyond the scope of this paper but
can be found in the work of Cheng (1999). The significant con-
tributions of the work are the following:

1) the use of prestack migrated gathers rather than stacked
data with a better S/N ratio,

2) the use of a 2-D image-processing approach, including
2-D statistical and wavelet features,

3) the use of the PNN for voxel classification,
4) the use of proximity features to limit the event search sp-

ce to only those designated as important by the analyst,
and

FIG. 1. Flowchart of PNN-based event-picking algorithm.

5) the excellent performance in picking events and avoiding
loop skips.

We present this method in four parts: feature definition, fea-
ture selection, voxel classification, and application of valley
finding with constraints. The results are compared to those from
a commonly used correlation picker. Four major conclusions
are drawn:

1) 2-D Gabor wavelet features are very effective in captur-
ing the character of events,

2) a PNN combines many different features into a best es-
timate that eliminates loop skips,

3) proximity features when combined with a PNN quantify
where to look for events, and

4) this algorithm has the potential of significant time and
financial savings when doing PSDM.

METHOD

We illustrate the method by applying it to a 2-D marine data
set with 468 subpoints (spaced every 69 m) and 45 offsets from
260 to 5636 m. There are 1600 time samples with a sampling
interval of 4 ms. The flowchart of the numerical algorithm is
shown in Figure 1.

Feature definition

The first and most important step we make is to define a set
of features to consider. This set needs to capture all of the char-
acter of an event used by the expert. Care should be taken to
be inclusive; redundant or unimportant features will be elimi-
nated during the feature selection. Since the discrimination of
coherent noise, such as multiples, is best in the CIP domain
and since we would like to avoid the need to resort the data,
we only consider 2-D image features of this gather.

The features are normalized by subtracting from each fea-
ture the mean of the feature values calculated over the ensem-
ble of training voxels (defined in the next section) and dividing
this result by the ensembel standard deviation. This normaliza-
tion makes the classifier insensitive to absolute units that can
vary from feature to feature.
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Gabor.—These features (Gabor, 1946; Morlet et al., 1982a,b;
Daugman and Kammen, 1987; Daugman, 1988; Clark et al.,
1989, 1991) are derived from hierarchical multiresolution 2-D
Gabor wavelet transforms of the CIP panels. These provide
magnitude and phase information about the events at a
variety of resolutions (scales), orientations (rotational angles),
and frequencies. A variety of elliptical Gabor kernels were
designed to have several different scales (with corresponding
frequencies) and a variety of orientations characteristic of the
CIP panel image and seismic wavelet (see Figure 2). Two scales
were chosen to match the mean frequency at early time (25 Hz)
and at later times (15 Hz). The time width of the Gaussian en-
velope encompasses three loops of the wavelet (16 and 27 ms).
The offset width matches the lateral resolution of the migration
(610 and 1039 m). Four different orientations were used, span-
ning the slope seen in both the events and the coherent noise
(0, 16, 39, and 131 ms/km). While this set of eight Gabor kernels
is not orthogonal, it does span the information content of the
data.

Figure 3 displays the magnitude of two of these Gabor trans-
forms of the image overlaid on the raw seismic traces. Note that
the event is highlighted by the one Gabor kernel and the co-
herent noise by the other. Figure 4 displays the Gabor phase
for the same data. The events are picked by the expert at a
well-defined phase, that is, at a negative peak. The Gabor mag-

FIG. 2. Gabor kernels and tile used to form event features.
Shown (top, in red) is the smaller of the two tiles used to cal-
culate the histogram features (40 ms × 1222 m). Beneath are
real parts of the Gabor kernels. (top) Small scale and (bottom)
large scale, both with 0 ms/km and 39 ms/km slope. Blue is
positive; red is negative.

nitude specifies where to look (with a resolution of order of the
width of the seismic wavelet envelope), and the Gabor phase
specifies exactly where to pick the event with a resolution of
the time digitization level.

To be more specific, the formula for the Gabor kernel is

K (t, x; t ′, x ′) = exp
(−T 2/2σ 2

T − S2/2σ 2
S

)
[cos 2π f T

+ i sin 2π f T ], (1)

where

T ≡ (t − t ′) cos θ + s − s ′

�s/�t
sin θ, (2)

S ≡ (s − s ′) cos θ − t − t ′

�t/�s
sin θ, (3)

tan θ ≡ dt/ds

�t/�s
, (4)

f is the frequency of the Gabor kernel, σT is the time width,
σS is the offset width, ds/dt is the orientation, �t is the time
sampling interval, �s is the offset spacing, s is the offset, t is
time, and x is the subpoint.

Amplitude histogram.—These features (Jain, 1989) can also
be called statistical moments of the data in an M × N neigh-
borhood (tile) centered about the image voxel. We started with
mean, standard deviation, skewness, and kurtosis using two
different-sized tiles (40 ms × 1222 m and 68 ms × 2077 m). The
raw amplitude data was also considered. After feature selec-
tion (described in the next section), we chose to use only the
raw data.

Semblance.—These features (Robinson and Treitel, 1980)
are calculated over the local neighborhood and provide a use-
ful indication of the coherence of the seismic traces in the offset
direction. This is also the mean square stack amplitude divided
by the mean square amplitude. We calculated this over the same
two neighborhoods used to calculate the amplitude histogram
features. Selection indicated the Gabor features captured the
same information as the semblance but with more class sep-
arability. The semblance features were therefore not used for
classification.

Proximity.—The proximity features are defined as follows.
Let �t represent the temporal sampling interval, which for our
data is 4 ms. Specify the location of the voxel currently under
analysis by (t, s, x). Specify the location of the jth analyst pick
for the ith event by (ti j , si j , xi j ). The first proximity feature, T ,
is defined as follows:

T = ln
( |�T |

�t
+ 1

)
, (5)

where �T is defined as the time difference between the voxel
currently under analysis to the nearest event:

�T = t − ti j . (6)

The natural log in equation (5) was used because we found
that when we used equation (6) for the proximity feature, the
histogram of the values of T for events had a small dynamic
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range but the histogram of T for backgrounds had a very large
dynamic range. This is undesirable because it leads to poor
classifier performance. However, the problem is avoided by
scaling the feature using equation (5) because the histograms
of the event and background features using that equation have
comparable dynamic ranges.

The second proximity feature, d, is defined as the spatial
distance between the voxel currently under analysis and the
nearest analyst pick:

d =
√

(s − si j )2 + (x − xi j )2. (7)

The third and fourth proximity features are similar to the first
two proximity features. The difference is that the next closest
analyst pick on the other side of the nearest analyst pick is
used. What is meant by the other side is the other side of a
line through the voxel under analysis (in the x–s plane) and
perpendicular to a line from the voxel under analysis to the
nearest analyst pick. These two features are added to allow
the PNN to interpolate between two analyst picks that bracket
the voxel under analysis.

Feature selection

Feature selection is important for several reasons. First, we
want to minimize the effects of the curse of dimensional-
ity, in the sense that classification computational complexity
increases rapidly with the dimension of the feature vector.
Second, we want to use only features that add significant

FIG. 3. Gabor magnitude feature images. Seismic amplitude data are shown as the vertical traces. The magnitude of the Gabor
transform is shown as an image behind the seismic data. White is zero, and the maximum value is red. There is an arbitrary time
origin. (a) Large-scale Gabor kernel with 0 ms/km slope. (b) Large-scale Gabor kernel with 39 ms/km slope.

value to the quality of the classification results. Unimpor-
tant or redundant features add negative or zero value and
should be removed. It is significant that human feature analy-
sis experts generally produce classification results based upon
a very small number of the most important attributes of a
signal. If too many features are used, the classifier perfor-
mance can actually degrade. Statistical decision theory tells us
that the probability of correct classification is an increasing
function of the number of features provided if the sample
size is very large. Empirical studies show that the probabil-
ity of correct classification is not generally a monotonically
increasing function of the number of features used. It gen-
erally increases up to a point at which it reaches a knee
in the curve and begins decreasing, finally leveling off at a
value less than the value at the knee (Devijver and Kittler,
1982; Fukunaga, 1990). Clearly, our goal is to find the num-
ber of features corresponding to the knee in the curve. Third,
an important byproduct of feature selection can sometimes
be increased knowledge of the physical processes that create
the data. By understanding which features are statistically most
important, we can often draw important conclusions about the
physical reasons why they are important, and this can lead to
productive insights that aid in the system design.

To select the features and train the PNN classifier, we must
create a set of training voxels. First, an expert picks several
event times for every offset and subpoint combination in the
data set. Twenty equally spaced CIP panels are chosen out of
the 468 CIP panels in the full data set. Several of the expert
event picks are chosen at random from each of the 20 panels.
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Care is taken to ensure that the chosen training events are
independent by demanding a minimum separation in time and
offset among the voxels. Second, several background voxels are
manually picked by an expert in each of the 20 panels. Care is
taken that these picks represent a variety of background types
and are independent.

We first use a formal feature selection algorithm (sequen-
tial forward selection) to rank the features according to the
Bhattacharyya measure of class separability (Young and Fu,
1986; Fukunaga, 1990). We then choose an appropriate sub-
set of features for actual use by the classifier. This saves
computation time and allows us to use only the most effec-
tive features. We use the well-known rule-of-thumb (Devijver
and Kittler, 1982) for the lower bound on the number of train-
ing samples to use: The number of independent training sam-
ples needed per class is at least five times the number of features
used in the feature vector. This rule also implies an upper bound
on the number of features that can be used, given the number
of independent training samples. For our problem, we trained
the PNN classifier with 107 event voxels and 100 backgroud
voxels. This limits us to using about 20 features. In the classi-
fier results presented, we actually used seven features (the raw
amplitude data and the magnitude and phase of the Gabor
transform using the large-scale kernel with 0 slope and the
small-scale kernel with 0 and 16 ms/km slope). By reducing
the number of features from 25 to 7, we saved 72% of the

FIG. 4. Gabor phase feature image. Seismic amplitude data are
shown as the vertical traces. The phase of the Gabor transform
is shown as an image behind the seismic data. Red is −π phase,
white is 0 phase, and blue is π phase. Large-scale Gabor kernel
with 0 ms/km slope is used. Human-edited correlation picks
are shown as blue circles.

computation (CPU) time. Although we sacrificed 52% of the
class separability as measured by the Bhattacharrya distance,
the performance of the overall algorithm was not significantly
degraded.

Voxel classification

PNN.—Linear classifiers such as the Fisher linear discrimi-
nant (Devijver and Kittler, 1982; Young and Fu, 1986) create
a linear decision surface in feature space. In general, optimal
performance requires that the classifier have the ability to cre-
ate a decision surface of arbitrary shape (i.e., nonlinear). We
use a special neural network known as the PNN that has this
property.

The PNN is a Bayesian statistical classifier based upon the
Parzen estimator of conditional probability density functions
(pdf’s) (Parzen, 1962; Specht, 1990a,b). The PNN has the desir-
able property that it provides the Bayes optimal pdf estimate in
the limit as the number of training samples approaches infinity.
For the two-class problem (E = event and B= background
or nonevent), given input data feature vector x, it estimates
the conditional probability density function values f (x|E) and
f (x|B). These pdf values can be used to calculate the posterior
probability of E given x, P(E |x), and the posterior probability
of B given x, P(B|x). Examples of a posterior probability im-
age are shown in Figures 5 and 6. Figure 5 shows the posterior
probability using the seven event features, P(E |xe). Notice the
loop skipping of a traditional correlation picker in the low S/N
ratio area at 3.6 s. Figure 6 shows the quantification of proxim-
ity given by the posterior probability using the four proximity
features, P(E |xp). Only 0.1% of the total number of expert
event picks chosen at random were used as analyst picks. This
corresponds to one pick every fourth CIP panel. Notice the
large area highlighted by this posterior probability. One will
need to rely on the event posterior probability to more pre-
cisely locate the event, but the proximity posterior probability
does indicate where to look.

Classification of the vector x is obtained by applying appro-
priate thresholds to the posterior probabilities given above. As
depicted in Figure 1, the next step is to form a binary labeled
image for each of the posterior probability images P(E |xe) and
P(E |xp) by applying thresholds to them. By thresholding the
posterior probability, we classify each voxel in the image to
belong to either the class event or the class background. We
call the result a binary labeled image. The Bayesian threshold
on the posterior probability is a function of the prior proba-
bilities and losses assumed for the analysis. For our applica-
tion, we cannot reasonably define the losses for the problem,
so we assume they are equal. The threshold is therefore not
affected by the losses. We can show that the decision thresh-
old for the posterior probability is just the prior probability of
the background, that is, P(E |x) > P(B) to be classified as an
event.

For our large data set of 468 CIP panels, we can estimate
the prior probability of background P(B) to be the number
of background voxels divided by the total number of voxels.
Using this method and visually inspecting the images, we es-
timate P(B) = 0.7. Interestingly, after classification with this
threshold, the fraction of voxels classified as background is
0.85.
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As part of the PNN training, a smoothing parameter σ is cho-
sen. This parameter determines the neighborhood of influence
of a training sample to the estimate of the pdf. The value of σ

should therefore be larger than the average spacing between
training samples but less than the scale on which the pdf varies.
This behavior is shown in Figure 7. Displayed is the proba-
bility of correct classification using the hold-one-out method
(Hogg and Craig, 1978; Devijver and Kittler, 1982; Young and
Fu, 1986) as a function of σ . There is a broad plateau between
0.05 (the spacing between training samples) and 1 (the scale
on which the pdf varies). If this plateau did not exist, it would
indicate there were not enough training samples to sample the
pdf. To calculate the posterior probability in Figure 5, we use
a value of σ = 1. This allows for the maximum smoothness in
the estimate of the pdf without significantly sacrificing perfor-
mance.

Connected components.—We create the labeled regions
from the binary labeled image using the method of connected
components (Jain, 1989; Haralick and Shapiro, 1992). The
connected components algorithm is a region-based segmen-
tation technique designed for use with binary images. The al-
gorithm maps the binary labeled image to an image showing re-
gions that are similar according to connectedness measures. All

FIG. 5. Event posterior probability image, P(E |xe), of a CIP
panel, shown as an image behind the seismic data. Seismic am-
plitude data are shown as the vertical traces. White is 0 prob-
ability, and red is a probability of 1. Large-scale Gabor kernel
with 0 ms/km slope is used. Human-edited correlation picks
are shown as blue circles. Unedited correlation picks in a low
S/N area, shown as green circles, demonstrate loop skipping.
Time origin is arbitrary.

FIG. 6. Proximity posterior probability image, P(E |xp), of a
CIP panel, shown as an image behind the seismic data. Same
panel and time origin as Figure 5. Seismic amplitude data are
shown as the vertical traces. White is 0 probability, and red is
a probability of 1.

FIG. 7. Tuning curve for event PNN. Shown is the probability
of correct classification P(CC) as solid circles. The error bars
indicate 95% confidence limits. The probability of detection,
P(E |E), or that an event will be classified as an event, is shown
as the dashed line with open circles. The probability that a
background voxel will be classified as background, P(B|B), is
shown as the solid line with open squares. The abscissa is the
dimensionless smoothing parameter.
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voxels that have the value binary one and are connected to each
other by a path of voxels all with the value binary one are given
the same identifying label. The label identifies a potential ob-
ject (event) region. Our definition of connectedness is that two
voxels are connected if they share a face, an edge, or a vertex
(i.e., a voxel has 26 nearest neighbors). Each region has a rich
set of properties which potentially can be exploited, including
shape, position, and statistical properties of values of the image
voxels corresponding to the region. An example of the results
of connected components analysis applied to only one sub-
point is shown in Figure 8. Note that the regions or connected
components for the seismic images have a variety of shapes.
We dub them clouds and refer to the multiple long, approxi-
mately horizontal regions within a given cloud as tentacles. The
tentacles are likely to represent different loops of the seismic
wavelet. We show in the next section that the final event picks
can be found using a valley-finding algorithm operating on the
clouds.

Valley finding and constraints

We wrote a rule-based valley-finding algorithm to determine
the final event picks from P(E |xe), P(E |xp), and the event re-
gion image. We want to find event picks similar to those spec-
ified by a human expert. Analysts inspect seismic images on a
workstation screen by eye and use a computer mouse to draw
lines on the image, showing their judgment of where seismic
horizons are located. The picks are continuous (unless there
are faults), correspond to peaks in the posterior probability of

FIG. 8. Event region image of a CIP panel. Same panel and
time origin as Figure 5. Seismic amplitude data are shown as
the vertical traces. Background is white; each event region is a
different color.

event, and form single-valued surfaces (in time) in the (x, s, t)
space. We are also only interested in events that are nominated
by the analyst and can be tracked over a significant range of
x and s. The following steps constrain the event picks to ones
that satisfy these conditions.

First, find event clouds that have greater than a minimum
number of voxels. [we used (10 voxels in t) by (10 voxels in s)
by (26 voxels in x) = 2600 voxels.]

Second, find the voxel with the maximum P(E |xe) in each
event cloud. Use those as first picks.

Third, follow the event in both offset directions, at a constant
subpoint, until the limit of the data is reached or the edge of the
event cloud is reached. Do this by finding all local maximums of
P(E |xe) in time within the same tentacle of event cloud at the
next offset. The new pick is the one with the minimum change
in time from the previous pick.

Fourth, follow the event to the adjacent subpoints unless
the limit of the data is reached or the edge of the event cloud
is reached. Do this by finding all local maximums of P(E |xe)
in time within the same tentacle of event cloud at the next
subpoint. The new pick is the one with the minimum change in
time from the previous pick. Go to step 3. Note: If an event does
not contain voxels that are within the binary labeled proximity
image, reject it.

The result of applying this rule-based algorithm to only
one subpoint is shown in Figure 9 without the proximity
constraints). When the proximity constraints are applied, only

FIG. 9. Event image of a CIP panel. Same panel and time origin
as Figure 5. Seismic amplitude data are shown as the vertical
traces. Event picks are shown as thin red lines. Proximity con-
straint is not applied. When proximity constraint is applied,
only the two events at 3.1 and 3.3 s remain.
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the two events (at 3.1 and 3.3 s) nominated by the analyst
remain.

RESULTS

The quality of the picks on the whole 2-D data set was quite
encouraging. A total of 35 events were picked without the
proximity constraints and 5 were picked with the proximity
constraints (9 events were nominated by the analyst). No loop
skips occurred on any of the events. This even included the
event in the low S/N area that caused the loop skip in the
correlation picker (see Figure 10). The event picks matched
the expert picks to within the time sampling interval (see Fig-
ures 10 and 11). Our algorithm was not as aggressive as the
expert, picking approximately 50–70% of the x–s area picked
by the expert. The aggressiveness of the algorithm could be in-
creased by lowering the prior probability of background P(B)
to a value below 0.7.

Further tests were done on selected CIP panels by both in-
creasing and decreasing the number of features from the seven
features used to process the whole data set. Adding additional
features did not significantly increase the probability of cor-
rect classification, reduce the number of loop skips, increase
the number of picked events, nor increase the precision of
the time picks. Decreasing the number of features to only one

FIG. 10. Event picks compared to expert and correlation picks
on a CIP panel. Same panel and time origin as Figure 5. Seismic
amplitude data are shown as the vertical traces. Human-edited
correlation picks are shown as blue circles. Unedited correla-
tion picks in a low S/N area, shown as green circles, demonstrate
loop skipping. The PNN event picks are shown as the red and
blue lines. The threshold P(B) had to be lowered to 0.3 from
0.7 to make the blue line picks.

Gabor magnitude and phase had a barely noticeable effect on
the same performance measures. Not using the Gabor phase,
even if the three most important Gabor magnitudes were
used, caused a significant degradation in every performance
measure.

This algorithm was implemented in interpreted MATLAB
code using a Macintosh 5300c Powerbook; it took 15 ms/
voxel/feature. We anticipate that compiling an equivalent algo-
rithm on an Ultra Sparc workstation should reduce the time to
150 µs/voxel/feature. The time to process an OCS block (70-m
subpoint spacing, 1600 time samples, and 45 offsets) would be
18 days on an Ultra Sparc.

CONCLUSIONS

Several conclusions can be drawn from this work. First, a
small number of 2-D Gabor features capture the character of
an event. Second, the PNN combines many different features
of the data into one best estimate that has very good properties
for locating and tracking an event. The probability of correct
classification during training is between 89% and 96% (95%
confidence limits). When the posterior probability is used in a
rather crude, rule-based tracking algorithm, no loop skipping
occurred. Third, the proximity posterior probability image is a
good way to quantify where to look for events. In practice, this
could be used to nominate events by picking the stack. The
fourth and most important conclusion is that implementation
of this algorithm could reduce the cost and cycle time of 3-D
prestack migration while improving the robustness. Estimates
indicate the cost of picking four OCS blocks would be reduced
from $75,000 (manual picking) to $6,000 (with our algorithm)
and the cycle time from 12 weeks to 1 week (assuming use of
a multiprocessor computer such as an SP2). The robustness
of the inversion would be increased since more events could
be picked without additional processing. Note that we had
to do work to reduce the number of picked events from 35
to 5.

Although these results are quite encouraging, some issues
remain to be explored. The robustness is better than standard

FIG. 11. Event picks compared to expert picks on a com-
mon-offset panel. Seismic amplitude data are shown as the
vertical traces. Time origin is arbitrary. The PNN event picks
are shown as red lines. Human-edited correlation picks are
shown as blue circles.
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correlation-based pickers, but improvements could still be
made. The method also includes the element of the black box
PNN. It would be difficult for a user to modify the algorithm
if a problem occurred with a particular data set. A possible
solution would be to include additional training samples from
the data set where the problem occurred. A final issue is the
computer execution time. Although our estimates indicate this
algorithm would only take 25% of the computer time needed
for a velocity update in the PSDM process, the operational
implementation needs to be done to prove this. These issues
lay the groundwork for future research.
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