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Detection of reservoir quality using Bayesian seismic inversion

James Gunning' and Michael E. Glinsky?

ABSTRACT

Sorting is a useful predictor for permeability. We show
how to invert seismic data for a permeable rock sorting pa-
rameter by incorporating a probabilistic rock-physics model
with floating grains into a Bayesian seismic inversion code
that operates directly on rock-physics variables. The Baye-
sian prior embeds the coupling between elastic properties,
porosity, and the floating-grain sorting parameter. The inver-
sion uses likelihoods based on seismic amplitudes and a for-
ward convolutional model to generate a posterior distribution
containing refined estimates of the floating-grain parameter
and its uncertainty. The posterior distribution is computed us-
ing Markov Chain Monte Carlo methods. The test cases we
examine show that significant information about both sorting
characteristics and porosity is available from this inversion,
even in difficult cases where the contrasts with the bounding
lithologies are not strong, provided the signal-to-noise ratio
(S/N) of the data is favorable. These test cases show about
25% and 15% improvements in estimated standard devia-
tions for porosity and floating-grain fraction, respectively, for
peak S/N of = 6:1. The full posterior distribution of floating-
grain content is more informative, and shows enhanced sepa-
ration into two clusters of clean and poorly sorted rocks. This
holds true even in the more difficult test case we examine,
where notably, the laminated reservoir net-to-gross is not sig-
nificantly improved by the inversion process.

INTRODUCTION

Seismic data have long been highly valued as the most important
information in delineating reservoir architecture and overall hydro-
carbon-in-place in the oil exploration business. This is especially the
case in regions where soft rock characteristics make the presence of
hydrocarbons visible in reflected amplitudes. If source-rock and
charge interpretations are favorable, an attractive hydrocarbon-vol-

ume estimate from seismic amplitudes makes a compelling case for
further appraisal work, such as drilling more appraisal wells.

But a commercial reservoir needs much more than favorable re-
serves — at the very least, the lithologies present must have favor-
able permeabilities for a commercial development to be viable.
Knowledge of permeability distribution is of importance at all stages
of appraisal and development. For expensive wells, e.g., deep water
exploration, it is clearly important to avoid drilling low permeability
areas. Another offshore scenario is that mapping of low permeability
areas may provide clues to the location of unrecovered oil in high
permeability areas which is unswept because of baffling from low-
permeability regions. Onshore, poorly sorted areas with lower per-
meability might contain appreciable bypassed oil in maturer produc-
ing fields, and thus be likely targets for infill drilling.

The value of seismic data in inferring permeability has been much
more questionable, however, since flow characteristics of rocks are
usually weakly coupled to their acoustic behavior in well-sorted
rocks. Poor sorting is nearly always associated with reduced perme-
abilities, but its effect on seismic character is less well defined. The
principal challenge is to see whether the rock-physics effects of poor
sorting can be separated from other lithological effects that can be
expected to have a broadly similar effect. The latter may be, e.g., in-
creased volume fraction of laminated shale, increased pore volume
of dispersed clay, or simply reasonable statistical variations in the
rock-physics properties that can occur even if the sorting character is
relatively constant. In this paper, we show that some information
about sorting characteristics can be obtained from seismic data— at
least for the data set under study and using a suitably calibrated rock-
physics model — provided the S/N is very good.

Two pieces of machinery are needed to address this question. The
first is a suitable rock-physics model incorporating sorting effects
and calibrated to the data set in question. Second, an inversion code
that incorporates the generalized rock-physics model in an explicitly
probabilistic framework will be necessary in order to fully explore
the ambiguities in the inversion that will arise.

Texture and sorting rock-physics issues have been addressed by
Marion (1990), Vernik (1997), and Dvorkin and Gutierrez (2002). A
recent survey of quantitative seismic interpretation with much atten-
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tion to rock-physics models, including sorting, is Avseth et al.
(2005). For this paper, we use the theory of DeMartini and Glinsky
(2006), which has much in common with the shaley-sand Yin-Mari-
on model (Marion, 1990; Avseth et al., 2005), excepting the nonsup-
porting secondary material are lithic fragments, not shale. For our
purposes, a theory covering only the grain-supported range of poorly
sorted rocks is required, without diagenetic effects: A much broader
theory covering other types of textures as well can be found in Dvor-
kin and Gutierrez (2002). Vernik (1997) pays particular attention to
diagenesis and loading issues, developing hybrid theoretical-empir-
ical expressions from simple effective medium theories for pores of
particular shapes. The lithic-fragment effects described by the De-
Martini and Glinsky (2006) model are broadly similar to what
Avseth etal. (2005) call sedimentation-controlled effects, in contrast
to the broad regional trends applicable to our data, which are usually
understood to be diagenetically controlled (in this case by compac-
tion). Another valuable study on texture, sorting, and seismic inver-
sion is Bachrach and Mukerji (2004), but this has a major focus on
poorly consolidated sediments, in contrast to our data.

The Bayesian seismic inversion code Delivery that we use to im-
plement the model is described in Gunning and Glinsky (2004). Oth-
er papers of a similar Bayesian spirit have appeared, e.g., Buland et
al. (2003), Buland and Omre (2003), and Eidsvik et al. (2004), but
the associated codes are not publicly accessible. The open-source li-
cense for Delivery makes the results of our research more easily ac-
cessible and reproducible for the geophysics community. Other
methods have appeared (Coleou et al., 2005) with a strong emphasis
— like ours — on inverting directly to petrophysical variables and
using rock-physics models for stabilization, but with a strong em-
phasis on optimization via annealing, the full uncertainty of the in-
version is not available.

Bayesian methods have also been used to try and discriminate
poorly sorted lithologies from seismic data (Avseth et al., 2001).
Like our work, the approach in Avseth etal. (2001) is explicitly prob-
abilistic, integrating rock-physics models, Gassman-style fluid ef-
fects, and AVO techniques in a Bayesian framework, but one of the
major limitations is that the informative seismic amplitudes in the
Bayesian classification are taken directly from seismic volumes. The
results are thus vulnerable to tuning effects, and the uncertainties
also do notreflect the increased ambiguity which occurs in these cas-
es. More recent work (e. g., Dutta et al., 2006) attempts to integrate
sequence-stratigraphic considerations into the inversion for rock-
quality parameters along similar lines, but the same limitation re-
garding amplitudes holds. We use a forward convolutional model in
the inversion process, which implicitly deconvolves the effects of
tuning, a widely known benefit (e.g., Abrahamsen et al., 1997). To
our knowledge, our work constitutes the first attempt to infer sorting
behavior in a Bayesian framework that models the interference ef-
fects associated with limited-resolution wavelets.

We are interested in inverting for sorting behavior in a depth range
and provenance identical to that of the data used to calibrate the
rock-physics model of DeMartini and Glinsky (2006). The data are
from a turbidite system (of significant commercial interest) with a
source that is rich in lithic fragment material. The depositional envi-
ronment is somewhat unusual in that the poorer-sorted areas are not
characterized by a marked increase in the volume fraction of dis-
persed clay (itis only a few percent), in contrast to many poorer-sort-
ed rocks, where the finer nonclay materials typically settle out with
much dispersed clay. More detail on the mineralogical issues can be
found in DeMartini and Glinsky (2006). In the general case, one

would expect to incorporate dispersed clay content into the rock-
physics model, but this is not required for these data. A rich discus-
sion of sorting issues in various depositional environments can be
found in McManus et al. (1988) and Boggs (2006); for example,
poorer-sorted sands are usually observed in the more distal parts of
the deposition, or in proximal areas where rapid decrease in flow ve-
locity occurs, e.g., fan deltas.

The outline of this paper runs as follows. We revisit in Rock-Phys-
ics Models the floating grain model of DeMartini and Glinsky
(2006), as a summary for the reader and to establish some notation.
We present in The Inversion Model a brief explanation of how this
model is incorporated into the Bayesian inversion code, explaining
what the parameterization is, the effective media assumptions, and
the details of the forward model. In Numerical Examples, we illus-
trate the implications of this model for two inversion problems
strongly inspired by the geology of the data set under study. Example
A: Asimple model system, examines the simplest seal over reservoir
toy problem, and explores the characteristics of the prior in some de-
tail. In Example B, more complex model based on field data, a much
more fully fledged model incorporating a complex seal structure and
two reservoirs is developed. Some of the more subtle questions con-
cerning the rock-physics model and our findings are addressed in the
Discussion, and we summarize in the Conclusions.

ROCK-PHYSICS MODELS

We recapitulate briefly the rock-physics model described in De-
Martini and Glinsky (2006). The purpose of this section is not to
evangelize this particular model contra other models in the litera-
ture, but to summarize the chosen theory and establish some nota-
tions and ideas for the convenience of readers. Of the material fol-
lowing, only that matter concerning the separation of the effects of
sorting from “conventional” variability using cluster analysis is new
— we believe this is a useful supplement to the original DeMartini
and Glinsky (2006) paper. We emphasize that the data set is unusual
in having low dispersed-clay content for a poorly sorted sandstone,
and that the theory is applicable to the grain-supported regime.

The DeMartini and Glinsky model assumes measurements apply
in the Gassmann low-frequency limit, and that the reservoir is a ho-
mogeneous isotropic medium. In general, they distinguish between
the fluid porosity ¢ and structural porosity ¢,. If the grain density
and bulk modulus are p, and K,, respectively, then filling the pore
space with a fluid or suspension with properties p;, K, produces an
effective medium of density

p=pyl = @)+ pso (1)

and compressional and shear velocities

2_&<3(1 ~ ) (1-p7 )
= o\ e, P ek —n1-8) Y
L K3(1-2v,)

= . 3
T 21+, .
Here the matrix bulk modulus is K,,, the dimensionless matrix bulk
modulus is 8 = K,,/K,, and v,, is the matrix Poisson’s ratio. The de-
pendence of the matrix B on (structural) porosity is taken to be that of
a conventional critical-porosity model (Nur et al., 1991; Mavoko et
al., 1998)
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B(d)?) = (1 - ¢s/¢c)A’ (4)

where ¢, is a critical suspension porosity, usually around 0.42, and A
adata-fitted constant.

For a poorly sorted collection of grains, the finer grains are treated
as a secondary component, which contributes in two pieces: (1)
some small volume fraction of fine grains do not support the rock
matrix and act like a pore-space fluid, whereas (2) the remaining
fraction is bound or captured into the load-bearing frame as the rock
is buried over time. If the overall fraction of small grains introduced
is f+, and a fraction f, of these are captured, then ¢y, = (1 — f.)f+ is
the volume fraction of floating grains. This floating fraction is treat-
ed as an effective fluid and modeled via Gassman substitution,
whereas the effect of the captured grains is absorbed by using the
structural porosity ¢, = ¢ + ¢y in B, equation 4, and the load bear-
ing or structural porosity appearing in the denominator of equation
2. The effect of the bound grains on the matrix Poisson’s ratio can be
shown to be weak, and is thus neglected.

DeMartini and Glinsky provide extensive arguments as to why
treating the second component as a significantly different mineral
does not yield an adequate match to the experimental data shown be-
low. Core and thin-section analysis of the data in question also pre-
cludes the presence of dispersed or finely laminated clay. The data
are then modeled using a bimodal (large and small floating grains)
mixture of a single mineral, which has the advantage that the overall
P-wave velocity simplifies to the expression

. K, 3(1 - v,)
= e

B¢ + éq)

1+,

(1 - B+ ¢n)’

¢(%— 1) o1 =B+ du)
3

(5)

where B( ¢ + ¢y is equation 4 evaluated at the modified porosity
¢y— P + ¢p. Arguments are also furnished to demonstrate that the
v, versus v, regional trend does not change to leading order under
this model, a prediction which is corroborated by the data.

The DeMartini and Glinsky {v,;, ¢;} data (i runs over samples)
from log measurements in the province of interest appear to fall into
distinct clusters. The measurements are restricted to short, well-re-
solved clean portions of the log, arithmetically averaged, and fluid-
substituted to a reference brine. One cluster, which may be depth-
correlated with core measurements of decent permeability (= 10?
— 10° mD) and fairly monodisperse sands, is modeled as clean rock,
with no floating component (¢, = 0). This log data are used in a
nonlinear regression v; = v,(¢;, dn = 0,A) + €, for the exponent A,
assuming generic values for quartz (K, = 37 GPa, p, = 2.65 g/
cm?), brine (p; = 1.05 g/em’®, v, ;= 1850 m/s), a mid-porosity
range typical clean sand Poisson’s ratio (v,, = 0.15), and a critical
porosity ¢, = 0.42. The regressed fit of A=1.724is then used in a
second regression for ¢y, using only the anomalous data, yielding
&n = 0.039, which is a plausible average value for the anomalous
data. The data and fits are shown in Figure 1. From this regression,
we speculate that the anomalous data are probably a mixture of rocks
with variable sorting characteristics, ranging from nearly clean to
perhaps ¢ = 5%, judging from the regressed value ¢, = 0.039 and
the scatter about the regression.

Because the floating fraction is an unobserved quantity for each
measurement, an important statistical question is how its distribu-
tion can be disentangled from the regression variance €,. The under-
lying distribution of ¢y, is unknown, but is likely to contain clusters,
often coinciding with well groups. We have chosen to fix the vari-
ance of ¢, to that of the regional trend, which accounts for the disper-
sion in the velocities due to conventional effects, and attribute the re-
maining dispersion to the effect of ¢y, A multicluster analysis (using
a modified form of MCLUST [Fraley and Raftery, 2003]) of the
univariate distribution of the residuals & = v,,; — Ureg uena( ¢:), With
cluster 1 fixed to the regional error (mean 0, variance var(£)
= o'ﬁp,,eg.) shows the most statistically significant clustering model is
a two-cluster split. The data points grouped with the regional trend
are shown circled in Figure 1.

Linearization of the best fit velocity relation v ,( ¢, ¢by,) (equation
5) about a suitable mean porosity ¢=0.24 and ¢y = 0 yields a
straight line approximation

vp =a, + by(dp+ (1 +8)) + €, (6)

where we have written the three required constants in this way for
consistency with the notation of DeMartini and Glinsky (2006). The
(zero mean) error term is €,. The linearization is clearly reasonable
for the data clusters of Figure 1.

In DeMartini and Glinsky (2006), the response to loading is cap-
tured using a standard exponential regression model dependent on
the effective stress o, with an additional term describing the grain
capturing effect:

b

1 —fc + €gp- (7)

¢ = a¢ + b¢(1 - e "'ff/PO) -

This expression is a statement that the total space occupied by the
pore fluid and the finer grains is compressed under loading in a con-
ventional way, and amounts to a definition of the capture fraction f...
Basin modeling provides estimates of the effective stress, and the
floating fraction estimates from the velocity regression on data clus-
ters then provide a way to estimate a4 and f, through fitting. When
this process is performed on the data set here, estimates of f, =

0.3522, a4 = 1.1, by = —0.8759, Py = 5.52 MPa, and o, = 0.0024
are produced.
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Figure 1. Density versus v, log data for clean sands and anomalous
sands, together with nonlinear regression best fits (¢, = 0, 0.039,
respectively, A = 1.724 in both cases). The straight line regional
trend is the average across a much larger data set for the region, with
approximate errors as shown.
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This model exhibits all the usual characteristics of poorly sorted
trend models. In particular, a plot of v,( ¢, ¢, — @) versus ¢ (using
equation 5), corresponding to varying sorting with fixed structural
porosity ¢,, shows the usual shallow-slope sorting-trend behavior,
comparable with, for example, Figure 1.11 of Avseth et al. (2005).

THE INVERSION MODEL

The inversion code we use operates on a layer-based model with
effective-media approximations for the layer properties, a 1D for-
ward convolutional model, linearized rock-physics trend models,
and approximate Zoeppritz relations for the AVO reflectivity equa-
tions. The layer-top times are the fundamental geometric variables.
Each layer is modeled as a finely laminated mixture of a reservoir
end member and a nonreservoir end member. The nonreservoir end
member internal properties are v,,, v,, and p. The reservoir end mem-
ber internal properties are v, vy, ¢, and ¢y,. The net-to-gross (NG) is
the volume fraction of reservoir end member appearing as fine-scale
horizontal laminations within a particular layer (i.e., has no relation
to the internal composition of the reservoir rock). Within the reser-
voir end member, the pore-fluid type, saturation, density, and v, are
possible additional variables.

Geometrically, the moving layer boundaries make this a simple
example of a marked-point model. The effective-media laws used in
each layer are, successively, (1) Ruess averaging for pore-scale fluid
mixing in the reservoir end member, (2) Gassmann’s law for fluid
substitution in the reservoir end member, and (3) Backus averaging
for laminated sand/shale upscaling using the NG. This produces a set
of effective layer properties for each layer. Synthetic seismic traces
are then generated from the effective layer properties, with reflec-
tions placed at the layer boundaries, using the convolutional model
and linearized Zoeppritz equations. The reflectivity is taken as a sec-
ond-order (in incidence angle #) approximation to the (isotropic)
Zoeppritz reflectivity R, of layer 1 above layer 2, namely

2v2<% + _2Avs>

s

1A Av Av v,
RPP = _(_p + _2) + 92 —L _ 2 : )
2\ p v, 2v, v,

(8)

with p = (p1 + p2)/2, v, = (V1 + V,2)/2, v, = (V51 + V52)/2, Ap
=p>— p1, Av, = v, — v,,, and Av, = v,, — v,;. Note that the in-
version operates directly on primary rock-physics parameters (layer
times, velocities, densities, porosities, saturations, etc.), so the im-
pedances and reflectivities merely come along for the ride. Hydro-
carbon-in-place estimates will be driven by the thickness (i.e., v, and
times), NG, and porosity, whereas permeability estimates will have a
contribution from ¢y,

The Bayesian framework correctly accounts for all the requisite
uncertainties in the rock physics and stratigraphic geometry in real-
istic models (within the limitations of the linearized rock-physics
model, the Gaussian noise assumptions, etc.). The rock-physics
models constitute the prior specification for the rock properties, and
interpreted horizons with (usually generous) error bars form the pri-
or for the layer times. Prior distributions of NG, fluid content, and
saturations are established by consultation with the geologist, petro-
physicist, etc. Quantities that are physically limited in range (e.g., 0
=NG=1) are given truncated-Gaussian prior distributions, which
we notate as, €.2., NG ~ Nqp(u,0?). The probability weight associ-

ated with the Gaussian tails outside the permissible range is col-
lapsed onto the endpoint, so these distributions are a mixture of a
spike(s) and a smooth Gaussian part.

The inversion code uses a Markov Chain Monte Carlo algorithm
to generate a suite of stochastic models from the posterior distribu-
tion, which fully embody the solution to the inverse problem. Inter-
rogation of this posterior ensemble produces (among other things)
best estimates of the rock properties (means, medians), and the asso-
ciated uncertainty (covariances, histograms, etc.).

This software has an established style of representing loading or
compaction curves where P-wave velocity is regressed directly
against suitable loading terms. The naturally augmented version of
these regressions suitable for incorporating sorting effects is

v, = Aup + vad + Dvp¢ﬂ[ + 61;’ 9)

¢=A¢+B¢UP+C¢¢ﬂt+ E(,b, (10)

using the existing notation in Gunning and Glinsky (2004) (d
= loading depth: the LFIV term in that paper is suppressed). The
shear relation is unchanged. The fully linear form of the prior and the
assumption of Gaussian regression errors also enables a multi-Gaus-
sian prior to be formulated. For each reservoir layer, this prior has the
conditional form P(v,|v,) P(¢[v,, ) P(v,|d, pn), where the vari-
ance of each of these Gaussian components comes from the regres-
sion variance, e.g., var(e;) = o2. The effective-stress dependence
can be effected by taking the loading depth d=1 — exp(— o/ Py) if
required.

Details of how the DeMartini and Glinsky form of the regressions
(equations 6 and 7) are coerced into these forms (i.e., equations 9 and
10) are given in Appendix A.

NUMERICAL EXAMPLES

We present here two examples illustrating how the inversion
works using a floating-grain model fitted to data from the province of
interest. There are two pay zones of interest. The first example is the
standard test problem of a single isolated reflector (focusing on the
upper pay), and the second is a more complex model based on the
full log data and both pay zones. The region of interest contains vari-
ous lithologies, but the main cap rock above the oil-bearing sands is a
shale, so we are chiefly interested in the trend properties of the pay
sand and this overlying shale.

We are interested also in the value of near- and far-offset seismic
data. Since the reflectivity (equation 8) is only O( 6?), we do not con-
sider very-far-offset (e.g., 55°) data in deference to this limitation:
far stacks are about 30° in these studies. Similar caveats are applied
in codes that use, e.g., the Shuey approximation (Avseth et al., 2005).
Naturally, the shear velocity v, contributes more substantially to the
reflectivity for the far stack. The far stack amplitudes will thus help
to constrain the v, parameters via the reflectivity (equation 8), hope-
fully in a complementary fashion to the constraints on v, that are em-
bedded in the rock-physics prior model.

The data that informs these examples creates what is convention-
ally called a class IIp AVO effect (Avseth et al., 2005) for the upper
sands (polarity flip occurs between near and far stacks), which is the
subject of the first example. The lower sands have more like a class |
effect, but in both cases the reflection coefficients are relatively
weak. The shifting of classes is caused by the increasing separation
of the impedance trends with depth. In the absence of floating grains,
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both events look like class I anomalies, but the reflections are still
relatively weak. It is always worthwhile remembering that the AVO
classifications are somewhat uncertain because of the seismic noise,
and that the classification has no explicit role in the inversion formal-
ism.

Rock trends for sands and shales

There are no major trending discontinuities expected in the data
set associated with tectonic, overpressuring, or diagenetic effects.
We would expect the trends to be of utility only in basin-local predic-
tion, as is common in calibrated rock-physics models. The clean
sand trends are not dissimilar to published trends for the same basin.
The (brine-saturated) shale and sand trends are common to both ex-
amples, so we dispense with these first. Quoted errors are one stan-
dard deviation.

Shales

Standard shale trends for the area in question are, with z as depth
below mudline,

v, = — 1640 + 0.946z(m) + 145(m/s), (11)
p = 0.6500)"% £ 0.029(g/cm?), (12)
v, = — 1027 + 0.801v, + 63(m/s). (13)

Sands

For the v, relation 5, the clean trend applicable is obtained by a lin-
earization of the fit line shown in Figure 1 (the nonlinear fit to the
clean rock data cluster), whose maximum-likelihood fit has A
= 1.724 and material constants as per the accompanying description.
At the mean data porosity ¢ = 0.24, the linearization of equation 5 to
the form equation 6 yields constants a,=5729 m/s, b, =
—9440 m/s, and g = 0.0248, with estimated error o, = v’var(e,,)
=229 m/s.

The loading trend for the pay sands is established in DeMartini
and Glinsky (2006) as

¢ = 1.1 = 0.876Zyg; — 1.54¢hy, + €4, (14)

with Z.=(1 — eoa@>3MP2)  and  error o,
= yvar(€,4) = 0.0024. Since the shale trends are
against z, we have converted this stress regression
(equation 14) to a depth trend, since the loading
term Z. is very nearly linear in depth over the
depth range of interest. The equivalent pay sand
depth trend (cf. equation 7) is

¢ =0.526 — 525 X 107z(m)
— 1.54¢y, + €. (15)

The last regression coefficient (1.54 = 1/(1
— f.)) corresponds to the capture fraction f,
= 0.35. With the understanding that z now plays
the role of Z.;, the conversion formulas of Appen-
dix A yield the constants Avp = 645 m/s, va
=0.508, D“p =5494 m/s, A,=0592, B, =
-1.03X 10 s/m, and C, = —0.976.

The shear trend for the data regressed directly to yield
v, =— 1213 + 0.83%v,, + 69(m/s). (16)

We have used the clean-sand regional-trend error estimates o-é/p
= 0.0093 and o~ 105 m/s in the augmented model, corresponding
to the conventional-effects assumption described earlier.

Example A: A simple model system

The aim here is to determine whether the presence of floating
grain material in the reservoir rock is ascertainable from reflected
amplitudes using the rock-physics model and regional regressions
just derived. We begin with the simplest two-layer shale/sand sys-
tem, which is free of the complication of interference or tuning ef-
fects.

The well logs used to construct the prior have some clean rocks
(no floating grains) and rocks with floating content of around 2% to
5%. To model the inferability of the float fraction, we constructed
synthetic seismic truth-case stacks for near- and far-stack angles of a
few degrees and about 30°, using a truth-case model with 5% float
and NG = 1, and all other parameters at the most likely values from
the trends. The reservoir fluid is taken as brine for this simple study.
Figure 2 illustrates the system, with truth-case plus posterior near
and far synthetics from the posterior of case (3) we describe below.

For inversion, the prior on floating fraction in the sand fraction of
layer 2 is taken as Nyx(0,0.05?), so the truth case is one standard de-
viation away from the prior mean, and the prior is biased towards
clean sands. We attempt to compute the posterior floating fraction
from three cases where the amount of laminated shale in layer 2 var-
ies. (1) No interbedded shale allowed; the prior on NG in layer 2 is
N1x(1,0) (which forces NG = 1), with near-stack only seismic. (2)
Some interbedded shale permissible; the prior is NG ~ Ng(1,0.2%)
(roughly 60% to 100% sand), with near-stack seismic only. (3) The
same prior NG ~ Nqg(1,0.2?), but with both near and far stacks. (Re-
member the inversion code shifts the probability associated with
NG >1 on to the endpoint NG = 1, so the prior in cases 2 and 3 is a
50:50 mixture of clean and laminated sands.) Recall that the NG is
associated with subseismic shale laminations (not dispersed clay),
and the floating fraction is associated with the sandstone lamina. For
these rocks, increasing layer NG and floating-grain content tend to
pull the upscaled rock properties in approximately similar direc-
tions.

Amplitude Amplitude
7.360'005 0 0.005 0.010 7_30—0.010 -0.0056 0  0.005
7.35
7.40
7.45
7.50
7.55
Near Far

Figure 2. Two-layer model system with truth-case (thick red) seismic traces and synthet-
ics from the posterior (black) for the inversion case 3 described in the text. The absolute
noise level is set at 0.002 for both stacks.
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For case 1, Figures 3-5 show three possible forms of the prior,
varied for illustrative purposes, on which we superpose the original
log data, which illustrates how the floating-grain effect smears out
the regional prior. In Figure 3, the model prior is constructed with ar-
tificially narrow o, = 0.002, showing how the parameters arise from
a clear 50:50 mixture of clean-rock regression points and an ellipti-
cal smear from the effects of the floating grains. The clean rock trend
is obviously far too narrow to embrace the clean well measurements,
but the clean trend is clearly visible and centered. Recall that the well
data is from a spread of depths, so it is not expected that the prior (ap-
plicable at the reservoir depth only) covers all well data. The differ-
ence between the general effects of increasing loading and increas-
ing floating-grain content is shown. Clearly, a convolution of this
mixture distribution along the depth direction would cover all the
well data comfortably.
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Figure 3. This and Figures 4 and 5 show three pedagogic priors for
velocity versus porosity in a pure sand layer at the reservoir depth.
Clean well data points (circles) and float-polluted well data points
(squares) are plotted on all three graphs; dots (-) are draws from the
model prior.
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Figure 4. Second illustrative prior: prior drawn from clean rocks
only (float fraction ¢, ~ N1r(0,0)), with broad porosity uncertainty
04 = 0.02. The tails of the distribution do not contain the floating-
grain data comfortably. Clean well data points (circles), float-pollut-
ed well data points (squares); dots (-) are draws from model prior.

Inversion analysis of posteriors

Fixed NG, single (near) stack.—Figures 6 and 7 show salient
scatter plots of properties of the sand layer before and after inver-
sion. Figure 8 shows the comparison of the floating-grain distribu-
tion. The peak S/N is set at about 6:1. These and subsequent figures
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Figure 5. Third illustrative prior: prior with o = 0.02 and float frac-
tion ¢y distributed as ~ N1z(0,0.052). Only a few measurements ap-
pear to lie at the periphery of the distribution, but the mixture charac-
ter is not as clear to the eye as in Figure 3. Clean well data points (cir-
cles), float-polluted well data points (squares); dots (-) are draws
from model prior.
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Figure 6. This and Figure 7 show scatterplots from prior distribution
(a and b) and posterior (c and d) for example A (2-layer model with
sand below shale), fixed NG = 1, near stack only. (a and c)
float_fraction (¢by,) versus sand porosity. A perceptible narrowing
around the true answer of ¢y = 5% is visible: Fewer clean sands are
produced in the posterior (see also the prior and posterior histograms
of ¢q in Figure 8). (b) and (d) The sand density versus sand velocity
U p(sand) SCatterplot narrows more obviously.
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use symbols defined in Gunning and Glinsky (2004) as follows: (1)
Rie. and Ry, defined as R, for the near and far stack, from equation
22; (2) overall layer effective density p.; and velocity v, ., defined
in equations 9 and 10 of that paper. The inversion is clearly able to
detect the presence of floating grain material and refine the porosity
estimates (see Figure 8).

Free NG, single (near) stack.—Figure 9 shows salient scatter
plots of properties of the sand layer after inversion, where the model
has additional NG freedom in the prior NG ~ Npx(1,0.22). As shown
in Figure 9f, the inversion produces virtually no posterior sharpen-
ing of the NG distribution. If anything, the NG broadens slightly,
perhaps reflecting the ambiguity between shale lamina and floating
grains (using only normal-incidence reflectivity). Nevertheless, the
floating-grain fraction estimate is still noticeably improved, as is the
porosity (green histogram, Figure 9d and e).

Free NG, near and far stack.—Inversion using far-offset data in
principle may help narrow down floating grain porosities better, as
the far-offset stack carries additional information about the shear ve-
locity via equation 8. The far stack for this test case is set at about 30°
(cf. a few degrees for the near) and the reflected amplitude is much
weaker (AVO effects). The noise level was set at the same value as
for the near stack.

For this case, it turns out that the far stack eliminates the weak
broadening of the NG estimates (blue histogram, Figure 9f), and in-
creases the fraction of realizations with appreciable floating grain
content by about 50% (blue curve, Figure 9d). The porosity estimate
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Figure 7. More scatterplots from prior distribution (a and b) and pos-
terior (c and d) for example A (2-layer model with sand below shale),
fixed NG = 1, near stack only. (a) and (c) The effective reflection co-
efficient R, versus layer time ¢ is clearly pinned down sharply. As
usual, these parameters are most heavily constrained. (b) and (d) The
layer-1 versus layer-2-P wave impedance. Very strong correlations
between these are induced, but the marginal distribution of each is
more weakly constrained.

is also noticeably sharpened around the truth-case value, and the
fraction of clean sands (high porosity, low floating-grain content) is
markedly decreased (Figure 9e). A significant sharpening in the
shear velocities v, and especially the overall far-reflection coeffi-
cient R_far also occurs.

In summary, the test case here appears to show that an inversion is
capable of detecting the presence or absence of floating grain materi-
al for the kinds of rocks studied at the depths of interest, as well as
tune up the reservoir porosity estimate. Addition of far stack data ap-
pears to help resolve the ambiguity between NG effects and floating
grain content, and improves the detectability of poorly sorted rocks
by around 50%. The basic reflection coefficients are relatively weak
(|R|~0.03) for both near and far stacks at this depth, so we regard
this as a significant result for an obviously difficult test case. In con-
trast to our usual experience of Bayesian inversion with imaged seis-
mic data, the updates to the sand/shale NG are very weak, despite the
encouraging results for floating-grain fraction. This phenomenon is
aparticular conspiracy of the impedance trends for the rocks in ques-
tion, so this asset appears to be a particularly challenging example.
Further challenges arise in the more complex field example of the
next section.

Example B: More complex model based on field data

In this example, based on actual field data, the complicating ef-
fects of additional lithologies and tuning considerations come into
play. The oil reservoir system we model here features upper and low-
er pay sands which are capped by a complex draping structure
including thick, acoustically hard marls and thin, soft, silty layers.
An overall simplified six-layer sequence for the system has been
modeled as (1) marl, (2) silt-marl stringer complex, (3) shale, (4) up-
per sand, (5) shale, and (6) lower sand, where the silt-marl stringer
complex is an upscaled (impermeable) layer absorbing some of the
very thin structures in the cap. The near-offset reflectivity from the
marl edge is sufficiently strong to dominate the reflection from the
upper sand top, so much extra information comes from the interface
with the shale below, and an additional 30° stack whose P-wave
reflectivity is more comparable to the marl. The wavelet used in pro-
ducing the synthetics is a 15.6 Hz Ricker-2, w(t) ~ (1 — 272Ff3)
X exp(—mrf3).
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Figure 8. Prior and posterior histograms of ¢y, in layer 2 of simple
sand-shale problem (example A, fixed NG = 1, near stack only).
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Figure 10 shows the upscaled layer structure superposed on the
logs and shale plus sand trends for the model. Note there are distinct
trends for the marl and stringer complex.

The main pay sands are not very clean, and are estimated to have
NG values of around 65 = 10% (on the seismic scale). Transitions
between shale lamina and sand are quite distinct. As with all dis-
cretized models of multiscale natural systems, there is some art in
blocking the well logs so the coarse-scale layers used in the inver-
sion have a sensible interpretation of the NG parameter. The layer
time-thicknesses are also selected to be seismically resolvable, and
are rarely less than 1/6 of a wavelength. We define NG from coarse-
layer vertical averages based on conventional facies classification
algorithms. The forward model uses Backus averaging to handle
subseismic layering effects, so the NG parameter should be regarded
as a layer-scale parameter; within-layer geologic heterogeneities are
effectively absorbed into the NG.

Oil is proved in these reservoirs with saturations of around 60%.
For simplicity, we fix the oil probability (set to 1) and saturation (set
to 0.6) in these layers. The floating-grain fraction in the main reser-
voirs is given a prior of Nx(0.02,0.03%), which gives a significant

Gunning and Glinsky

prior probability to the zero-float or clean-sand case. The “truth
case” corresponds to a float fraction of 3.5%. Note that the prior in
these inversions is sufficiently loose to allow layers 1, 2, or 3 to pinch
out.

Figure 11 shows some typical “spaghetti plots” of the synthetic
seismic from the posterior plotted against the truth-case data, for
both stacks. Typical realizations from prior and posterior are also
shown as “layer-cake” images of layers against realization number.

As might be expected, the inversion produces strong updates to
parameters like the layer times, impedances, effective layer velocity,
and porosity. Some salient results are shown in Figures 12 and 13: In
general the most significant improvements occur in the thicker lay-
ers (4, 6), whereas tuning effects significantly limit what may be in-
ferred about the thinner structures. A reasonable improvement in the
float-fraction estimate occurs, in particular the fact that the posterior
significantly reduces the zero float possibility. The most likely pre-
diction is correct at around 0.035. The NG estimates are barely im-
proved, mainly because the upper sand offers a weak impedance
contrast to its mixing shale when floating grain material is present at
around 3% (the trend curves). The sensitivity to floating-grain frac-
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Figure 9. Example A results. Scatterplots from the posterior for the model with looser NG distribution in prior (near stack only). (a) Floating-
grain fraction ¢y, versus sand porosity ¢, (b) effective density p. versus effective velocity (v,.r). (¢) Scatterplot of NG versus ¢y,. No obvious
strong correlation between NG and ¢y, appears here, with the density strongest near the truth-case values ( ¢y, = 0.05, NG = 1.0). (d) Histogram

of ¢y, from the prior (red) and posterior, using only near stack (green) and also both stacks (blue). Similar histograms of porosity shown in (e) and
NG in (f). The truth case porosity is ¢» = 0.17.
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tion is very much higher than that to NG, so the update is stronger. &, NG) markedly. Though not shown, the far-stack data greatly im-
Again, the far-stack data helps to refine the shear properties signifi- proves the v, statistics of the shale in layer 5, but not the adjoining
cantly, but this does not couple back through the prior strongly reservoir sands. Overall, however, the improvements over the prior
enough to improve estimates of the quantities of direct interest (¢, are not strong in view of the aggressive S/N.
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Figure 10. Example B: Layer-based model truth-case properties for the test model: logs (red) and truth-case mean properties (cyan) are shown,
for density, P-wave velocity and normal impedance. The succession of six layers is clearly evident. The shale trend is shown green, sand is blue:
The deflections in the sand trend lines are due to the floating-grain term, and these are shown without fluid substitution. The streaks in the logs are
caused by small cemented sand units that have no large-scale effect on the seismic.

Figure 11. Inversion results for the six-layer ex-
ample B model shown in Figure 10. (a, d, e). Syn-
thetic seismic curves (black) for model samples,
superposed on actual data (red), as drawn from
Prior ¢)  Posterior prior (a, near stack), and posterior (d, near stack;
e, far stack). Note the noise level is set very low;
the S/N is at least 10:1. (b and ¢) Approximately
50-layer realizations from the prior and posterior,
respectively, in time. The layers are shaded in as-
cending grayscale according to layer number.
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In conclusion, the more realistic toy problem here shows that de-
tection of poorly sorted material is possible with very favorable S/N.
Several asset-specific issues make this more difficult than might at
first be expected. The first is that the reflection at the top of the upper
pay falls in the sidelobe of the very strong reflection from the overly-
ing marl layer, so tuning effects and uncertainties in the modeling of
the cap rock package, in general, limit what may be discerned about
the underlying sand. Secondly, the particular loading behavior char-
acteristic of the pay depth makes the shale impedance quite close to
that of the sand, so the overall strength of the main reservoir reflec-
tion is notably weaker than other nearby events. In view of the diffi-
culties, it is relatively consoling that positive information about the
floating-grain contribution can be drawn when very little can be said
about the NG.

DISCUSSION
Rock-physics model

It could be argued that the effects we seek to model warrant a more
sophisticated model of the effects of sorting than that of DeMartini
and Glinsky (2006). However, for the regime in which we seek to
make predictions, we believe this theory to be adequate for our pur-
poses, well fitted to the data, and statistically significant. We note
that a common feature of all the rock-physics models cited in the In-

troduction is the need for empirical relations or constants at some
point in the theory, whether at the naive level of the critical-porosity
power exponents of DeMartini and Glinsky (2006), critical concen-
trations in Dvorkin and Gutierrez (2002), the deeper Hertz-Mindlin
plus coordination-number theory in Dvorkin and Nur (1996), or the
pore-shape factor versus porosity relations of Vernik (1997). Over
the ranges we seek to predict, the rock-physics effects are close to
linear, and thus it is virtually certain that any credible model using a
single parameter to represent sorting will linearize to the forms of
equations 6 and 7. The only likely ornament is a weak effect on the
shear velocity — weak enough to fit within the v, versus v, regres-
sion error already established for the regional trend (see also the dis-
cussion in DeMartini and Glinsky, 2006). Moreover, to paraphrase a
remark of G. Mavko, probably any appropriate theory chosen from
the literature and well fitted to the data will produce similar predic-
tions.

Common characteristics of the inversion examples

Some of the more interesting information available from the in-
version requires higher-order statistical expressions than simple
means and standard deviations. In particular, since many of the dis-
tributions are skewed or truncated, examination of histograms or bi-
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variate scatter plots is more revealing than simple means and stan-
dard deviations.

For example, we show in Table 1 selected properties of the reser-
voir layer ranked by the degree which the standard deviation is re-
duced by the inversion, for the two-stack simple interface example
A. The rather modest improvement on the floating fraction estimate
in this table does not fully convey the significant shift in the univari-
ate distribution shown in Figure 8 or 9d.

Clearly from Table 1, as one would expect, the geometry (layer
times) and (between-layer) reflectivities are the best-identified pa-
rameters in the inversion. Any within-layer property per se is much
less well identified, including the P-wave impedance. Improvements
in the estimation of effective density, fluid porosity, and floating-
grain fraction are all roughly comparable, but less than the P-wave
impedance update. In this particular environment, the identification
of NG is very problematic, but this is (partly) due to the shale-sand
trend crossover phenomenon, as remarked previously.

As far as univariate statistics go, the same generic findings and
ranking hold for the more complicated six-layer model example B.
For bivariate statistics, in both examples, very strong correlations
between the impedances of adjacent layers are produced (e.g., Fig-
ure 7d, coinciding with the sharply defined reflection coefficient),
but the univariate posterior distributions of any individual layer im-
pedance are nowhere near as sharp. Perhaps counterintuitively, no
strong correlations appear between NG and parameters like porosity
or ¢y, in the posterior distributions. This is largely because the indi-
vidual layer impedances are not especially well pinned down, but
also because the reservoir layer impedance does not correlate strong-
ly with NG (at this depth). Since the narrowing of the layer imped-
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ance is obviously an upper bound on what may be inferred about any
particular rock property within a layer, the modest findings of Table
1 are no surprise.

The fundamental limitations on inference are set by the parame-
ters that control the overall statistical spread in the layer impedance.
These come down ultimately to the regression errors in fitting the re-
gional trends, and it should be clear that tight characterization of the
nonreservoir facies is equally important to that of the reservoir
rocks. Figure 7d, for example, illustrates clearly that the prior rock-
physics uncertainties in impedance are much greater than the rela-
tive impedance change commanded by the seismic amplitudes (for
this particular data set). In terms of posterior sharpening, the sorting
characterization parameter ¢y, seems to fare not much worse than
other classical rock parameters like the P-wave velocity and porosi-
ty, if we make the judgment on the standard deviation alone. A rough
and ready argument corroborating the results of Table 1 is this: using
realizations from the prior distribution of example A, case 2, the
P-wave impedance regresses directly against v, ¢, ¢n,, or NG with
Pearson r2 values of of 0.95, 0.88, 0.71, and 0.03, respectively. This
is exactly the relative ordering of the standard deviation improve-
ment we see, with roughly the same quality of improvement. Again,
the improvement in ¢y, is best understood in terms of the refinement
of the posterior histograms, as per Figures 8, 9c, and 12a.

Alikely and commonsense generalization is that the inference im-
provement for any parameter (including sorting) is the improvement
of the impedance multiplied by the fraction of the variance of the im-
pedance accounted for by that parameter. This generic principle
should hold true for other data sets and environments.
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Figure 13. (a—d) Scatterplots of selected property pairs from the near-stack-only inversion. (e~h) The same, using both stacks. (a and b) (Clear
tuning-ambiguity effects in the delineation of layer 3 which are not resolved by the use of the near stack only: An appreciable fraction of realiza-
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significantly reduce the uncertainty in most of the histograms of Figure 12, however.
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Table 1. Prior and posterior standard deviations of selected properties of the

reservoir layer (layer 2) from the two-stack inversion of example A. Properties

are ranked by decreasing order of sensitivity, as computed from the ratio

column (posterior/prior).
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Property deviation deviation Ratio
R_near 0.044 0.0028 0.06 APPENDIX A
layer-time (ms) 10.00 0.80 0.08
R_far 0.027 0.0028 0.10 CONVERSION OF
P-wave impedance (g/cm?) X (ft/s) 1900.00 1240.00 0.65 REGRESSION FORMULAS
v, (sand end member, ft/s) 565.00 372.00 0.66 Approximate conversion to the Gunning and
¢ 0.04 0.03 0.75 Glinsky (2004) form of the coupled regressions
pei (g/em?) 0.065 0.05 0.77 (i.e., equations 9 and 10) from the DeMartini and
b 0.025 0.022 0.88 Glinsky style (equations 6 and 7) can be derived
Ng 0'11 0'12 ~1' by simple algebra and assumption of indepen-

dence of errors. The result is

CONCLUSION

The quantitative floating-grain rock-physics model of DeMartini
and Glinsky has been incorporated into a model-based Bayesian
seismic inversion code to assess the inferability of sorting character-
istics from seismic data. Development of the requisite trend models
requires careful log and core analysis and some simple nonlinear re-
gression studies. The simple synthetic inversion studies we present
are closely based on actual asset data, and show that genuinely im-
proved estimates of the floating-grain or sorting characteristics, plus
the reservoir porosity, are possible if the seismic data has sufficient
S/N. For peak S/N of about 6:1 the examples show about 25% and
15% improvements in standard deviations for porosity and floating-
grain fraction, respectively. Moreover, since the posterior distribu-
tion of floating grain content is a mixture, the full histogram or mar-
ginal is more interesting than the first- and second-order statistics
alone: Our test cases are examples where the posterior separates
clearly into two clusters of clean and poorly sorted rocks.

The refinements in porosity and floating-grain fraction estimates
are a modest fraction of the relative improvements in estimation of
the layer impedance. We predict the methodologies of this paper will
be useful in inferring sorting characteristics whenever the sorting pa-
rameter correlates strongly with impedance, and effects of sorting
are in a significantly different direction from that of shale lamina-
tions. The first condition is usually satisfied, but the second may vary
substantially with local geology. For the cases studied, far-offset
data was shown to assist in discrimination of poorly sorted rocks by
an extra factor of up to 50%.

The asset in question has some particular challenges associated
with a relatively weak reservoir reflection coefficient and complex
tuning interference from a hard marl above the reservoir cap, so we
regard it as a difficult test case. The inversion techniques for rock
quality demonstrated in this paper can be expected to produce sharp-
er posterior updates for data sets free of these particular conspira-
cies.
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APPENDIX B
IMPLEMENTATION DETAILS

The inversion code (Gunning and Glinsky, 2004) works with two
versions of the model vector m. The vector m has a fully Gaussian
prior, with no truncations or restrictions on values. The physical
model vector m’, which is used in the forward model and its associ-
ated likelihoods (seismic, isopachs) is obtained by applying time or-
derings and truncations (e.g., of NG or saturations) to m, i.e., m’
= f(m), where f() embeds these rules. The truncation effectively in-
duces a prior which, for simple properties like NG, is a mixture of a
truncated Gaussian distribution and delta functions at endpoints.
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Figure B-1. (a) Pure truncation of ¢y, resulting in smearing of prior along ¢, = 0 plane.
(b) The remappings of equations B-1 through B-4 which seem more reasonable.

With the augmented models defined by equations 9 and 10, the
linearity means the prior is still Gaussian, but the truncation of ¢y, in
m’ must be handled with care. The extra coefficients D, , C,have the
effect of placing the prior on inclined ellipsoids in e.g., the {v,, ¢n
plane, so pure truncation on ¢y, has the effect of smearing the tail of
the distribution onto the plane ¢y, = 0 in a direction off the principal
axes. This is clearly an undesirable way to handle the prior. Figure
B-1 shows a scatter plot of points produced from a prior constructed
in this naive way, with the obvious artifacts. A more reasonable way
to handle the truncation is with the mappings (only for ¢y, <0):

v, =0, = Dy by (B-1)
¢ =d+ qu(v,; -v,) — Cyday (B-2)
vy =0, + B, (v, —v)), (B-3)
bn = 0, (B-4)

which forces the remapping to occur along directions parallel to the
principal axes.

This mapping minimizes the difference (m’ — m)”C3'(m’ — m),
subject to the positivity constraint, which seems a reasonable formu-
lation. The prior will then be a mixture of clean rocks ( ¢, = 0) and
poorly sorted rocks distributed along the ellipsoid with ¢y, >0

Note that the actual Gassman fluid substitution calculation that
occurs later in the forward model uses only the pure fluids (oil, gas,
etc.), as the Gassman-like effect of the floating-grain presence is im-
plicitly accounted for by the floating-grain terms in the modified re-
gressions.
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