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ABSTRACT

Sorting is a useful predictor for permeability. We show
how to invert seismic data for a permeable rock sorting pa-
rameter by incorporating a probabilistic rock-physics model
with floating grains into a Bayesian seismic inversion code
that operates directly on rock-physics variables. The Baye-
sian prior embeds the coupling between elastic properties,
porosity, and the floating-grain sorting parameter. The inver-
sion uses likelihoods based on seismic amplitudes and a for-
ward convolutional model to generate a posterior distribution
containing refined estimates of the floating-grain parameter
and its uncertainty. The posterior distribution is computed us-
ing Markov Chain Monte Carlo methods. The test cases we
examine show that significant information about both sorting
characteristics and porosity is available from this inversion,
even in difficult cases where the contrasts with the bounding
lithologies are not strong, provided the signal-to-noise ratio
�S/N� of the data is favorable. These test cases show about
25% and 15% improvements in estimated standard devia-
tions for porosity and floating-grain fraction, respectively, for
peak S/N of �6:1. The full posterior distribution of floating-
grain content is more informative, and shows enhanced sepa-
ration into two clusters of clean and poorly sorted rocks. This
holds true even in the more difficult test case we examine,
where notably, the laminated reservoir net-to-gross is not sig-
nificantly improved by the inversion process.

INTRODUCTION

Seismic data have long been highly valued as the most important
nformation in delineating reservoir architecture and overall hydro-
arbon-in-place in the oil exploration business. This is especially the
ase in regions where soft rock characteristics make the presence of
ydrocarbons visible in reflected amplitudes. If source-rock and
harge interpretations are favorable, an attractive hydrocarbon-vol-
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me estimate from seismic amplitudes makes a compelling case for
urther appraisal work, such as drilling more appraisal wells.

But a commercial reservoir needs much more than favorable re-
erves — at the very least, the lithologies present must have favor-
ble permeabilities for a commercial development to be viable.
nowledge of permeability distribution is of importance at all stages
f appraisal and development. For expensive wells, e.g., deep water
xploration, it is clearly important to avoid drilling low permeability
reas.Another offshore scenario is that mapping of low permeability
reas may provide clues to the location of unrecovered oil in high
ermeability areas which is unswept because of baffling from low-
ermeability regions. Onshore, poorly sorted areas with lower per-
eability might contain appreciable bypassed oil in maturer produc-

ng fields, and thus be likely targets for infill drilling.
The value of seismic data in inferring permeability has been much
ore questionable, however, since flow characteristics of rocks are

sually weakly coupled to their acoustic behavior in well-sorted
ocks. Poor sorting is nearly always associated with reduced perme-
bilities, but its effect on seismic character is less well defined. The
rincipal challenge is to see whether the rock-physics effects of poor
orting can be separated from other lithological effects that can be
xpected to have a broadly similar effect. The latter may be, e.g., in-
reased volume fraction of laminated shale, increased pore volume
f dispersed clay, or simply reasonable statistical variations in the
ock-physics properties that can occur even if the sorting character is
elatively constant. In this paper, we show that some information
bout sorting characteristics can be obtained from seismic data — at
east for the data set under study and using a suitably calibrated rock-
hysics model — provided the S/N is very good.

Two pieces of machinery are needed to address this question. The
rst is a suitable rock-physics model incorporating sorting effects
nd calibrated to the data set in question. Second, an inversion code
hat incorporates the generalized rock-physics model in an explicitly
robabilistic framework will be necessary in order to fully explore
he ambiguities in the inversion that will arise.

Texture and sorting rock-physics issues have been addressed by
arion �1990�, Vernik �1997�, and Dvorkin and Gutierrez �2002�. A

ecent survey of quantitative seismic interpretation with much atten-

ovember 20, 2006; published onlineApril 3, 2007.
ing@csiro.au.
.com.
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R38 Gunning and Glinsky
ion to rock-physics models, including sorting, is Avseth et al.
2005�. For this paper, we use the theory of DeMartini and Glinsky
2006�, which has much in common with the shaley-sand Yin-Mari-
n model �Marion, 1990; Avseth et al., 2005�, excepting the nonsup-
orting secondary material are lithic fragments, not shale. For our
urposes, a theory covering only the grain-supported range of poorly
orted rocks is required, without diagenetic effects: A much broader
heory covering other types of textures as well can be found in Dvor-
in and Gutierrez �2002�. Vernik �1997� pays particular attention to
iagenesis and loading issues, developing hybrid theoretical-empir-
cal expressions from simple effective medium theories for pores of
articular shapes. The lithic-fragment effects described by the De-
artini and Glinsky �2006� model are broadly similar to what
vseth et al. �2005� call sedimentation-controlled effects, in contrast

o the broad regional trends applicable to our data, which are usually
nderstood to be diagenetically controlled �in this case by compac-
ion�. Another valuable study on texture, sorting, and seismic inver-
ion is Bachrach and Mukerji �2004�, but this has a major focus on
oorly consolidated sediments, in contrast to our data.

The Bayesian seismic inversion code Delivery that we use to im-
lement the model is described in Gunning and Glinsky �2004�. Oth-
r papers of a similar Bayesian spirit have appeared, e.g., Buland et
l. �2003�, Buland and Omre �2003�, and Eidsvik et al. �2004�, but
he associated codes are not publicly accessible. The open-source li-
ense for Delivery makes the results of our research more easily ac-
essible and reproducible for the geophysics community. Other
ethods have appeared �Coleou et al., 2005� with a strong emphasis
like ours — on inverting directly to petrophysical variables and

sing rock-physics models for stabilization, but with a strong em-
hasis on optimization via annealing, the full uncertainty of the in-
ersion is not available.

Bayesian methods have also been used to try and discriminate
oorly sorted lithologies from seismic data �Avseth et al., 2001�.
ike our work, the approach in Avseth et al. �2001� is explicitly prob-
bilistic, integrating rock-physics models, Gassman-style fluid ef-
ects, and AVO techniques in a Bayesian framework, but one of the
ajor limitations is that the informative seismic amplitudes in the
ayesian classification are taken directly from seismic volumes. The

esults are thus vulnerable to tuning effects, and the uncertainties
lso do not reflect the increased ambiguity which occurs in these cas-
s. More recent work �e. g., Dutta et al., 2006� attempts to integrate
equence-stratigraphic considerations into the inversion for rock-
uality parameters along similar lines, but the same limitation re-
arding amplitudes holds. We use a forward convolutional model in
he inversion process, which implicitly deconvolves the effects of
uning, a widely known benefit �e.g., Abrahamsen et al., 1997�. To
ur knowledge, our work constitutes the first attempt to infer sorting
ehavior in a Bayesian framework that models the interference ef-
ects associated with limited-resolution wavelets.

We are interested in inverting for sorting behavior in a depth range
nd provenance identical to that of the data used to calibrate the
ock-physics model of DeMartini and Glinsky �2006�. The data are
rom a turbidite system �of significant commercial interest� with a
ource that is rich in lithic fragment material. The depositional envi-
onment is somewhat unusual in that the poorer-sorted areas are not
haracterized by a marked increase in the volume fraction of dis-
ersed clay �it is only a few percent�, in contrast to many poorer-sort-
d rocks, where the finer nonclay materials typically settle out with
uch dispersed clay. More detail on the mineralogical issues can be

ound in DeMartini and Glinsky �2006�. In the general case, one
ould expect to incorporate dispersed clay content into the rock-
hysics model, but this is not required for these data. A rich discus-
ion of sorting issues in various depositional environments can be
ound in McManus et al. �1988� and Boggs �2006�; for example,
oorer-sorted sands are usually observed in the more distal parts of
he deposition, or in proximal areas where rapid decrease in flow ve-
ocity occurs, e.g., fan deltas.

The outline of this paper runs as follows. We revisit in Rock-Phys-
cs Models the floating grain model of DeMartini and Glinsky
2006�, as a summary for the reader and to establish some notation.

e present in The Inversion Model a brief explanation of how this
odel is incorporated into the Bayesian inversion code, explaining
hat the parameterization is, the effective media assumptions, and

he details of the forward model. In Numerical Examples, we illus-
rate the implications of this model for two inversion problems
trongly inspired by the geology of the data set under study. Example
:Asimple model system, examines the simplest seal over reservoir

oy problem, and explores the characteristics of the prior in some de-
ail. In Example B, more complex model based on field data, a much

ore fully fledged model incorporating a complex seal structure and
wo reservoirs is developed. Some of the more subtle questions con-
erning the rock-physics model and our findings are addressed in the
iscussion, and we summarize in the Conclusions.

ROCK-PHYSICS MODELS

We recapitulate briefly the rock-physics model described in De-
artini and Glinsky �2006�. The purpose of this section is not to

vangelize this particular model contra other models in the litera-
ure, but to summarize the chosen theory and establish some nota-
ions and ideas for the convenience of readers. Of the material fol-
owing, only that matter concerning the separation of the effects of
orting from “conventional” variability using cluster analysis is new

we believe this is a useful supplement to the original DeMartini
nd Glinsky �2006� paper. We emphasize that the data set is unusual
n having low dispersed-clay content for a poorly sorted sandstone,
nd that the theory is applicable to the grain-supported regime.

The DeMartini and Glinsky model assumes measurements apply
n the Gassmann low-frequency limit, and that the reservoir is a ho-

ogeneous isotropic medium. In general, they distinguish between
he fluid porosity � and structural porosity �s. If the grain density
nd bulk modulus are �g and Kg, respectively, then filling the pore
pace with a fluid or suspension with properties � f, Kf produces an
ffective medium of density

� = �g�1 − �� + � f� �1�

nd compressional and shear velocities

vp
2 =

Kg

�
�3�1 − �m�

1 + �m
� +

�1 − ��2

�s�Kg/Kf − 1� + 1 − �
� , �2�

vs
2 =

Kg

�

3�1 − 2�m�
2�1 + �m�

� . �3�

ere the matrix bulk modulus is Km, the dimensionless matrix bulk
odulus is � = Km/Kg, and �m is the matrix Poisson’s ratio. The de-

endence of the matrix � on �structural� porosity is taken to be that of
conventional critical-porosity model �Nur et al., 1991; Mavoko et
l., 1998�
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Sorting from Bayesian inversion R39
���s� = �1 − �s/�c��, �4�

here �c is a critical suspension porosity, usually around 0.42, and �
data-fitted constant.
For a poorly sorted collection of grains, the finer grains are treated

s a secondary component, which contributes in two pieces: �1�
ome small volume fraction of fine grains do not support the rock
atrix and act like a pore-space fluid, whereas �2� the remaining

raction is bound or captured into the load-bearing frame as the rock
s buried over time. If the overall fraction of small grains introduced
s f*, and a fraction fc of these are captured, then �flt��1 − fc�f* is
he volume fraction of floating grains. This floating fraction is treat-
d as an effective fluid and modeled via Gassman substitution,
hereas the effect of the captured grains is absorbed by using the

tructural porosity �s = � + �flt in �, equation 4, and the load bear-
ng or structural porosity appearing in the denominator of equation
. The effect of the bound grains on the matrix Poisson’s ratio can be
hown to be weak, and is thus neglected.

DeMartini and Glinsky provide extensive arguments as to why
reating the second component as a significantly different mineral
oes not yield an adequate match to the experimental data shown be-
ow. Core and thin-section analysis of the data in question also pre-
ludes the presence of dispersed or finely laminated clay. The data
re then modeled using a bimodal �large and small floating grains�
ixture of a single mineral, which has the advantage that the overall
-wave velocity simplifies to the expression

vp��,�flt�2 =
Kg

�g�1 − �� + � f��3�1 − �m�
1 + �m

��� + �flt�

+
�1 − ��� + �flt��2

��Kg

Kf
− 1� + 1 − ��� + �flt�� , �5�

here ��� + �flt� is equation 4 evaluated at the modified porosity
s←� + �flt. Arguments are also furnished to demonstrate that the

s versus vp regional trend does not change to leading order under
his model, a prediction which is corroborated by the data.

The DeMartini and Glinsky 	vp,i,�i
 data �i runs over samples�
rom log measurements in the province of interest appear to fall into
istinct clusters. The measurements are restricted to short, well-re-
olved clean portions of the log, arithmetically averaged, and fluid-
ubstituted to a reference brine. One cluster, which may be depth-
orrelated with core measurements of decent permeability ��102

103 mD� and fairly monodisperse sands, is modeled as clean rock,
ith no floating component ��flt = 0�. This log data are used in a
onlinear regression vi = vp��i,�flt = 0,�� + �p,i for the exponent �,
ssuming generic values for quartz �Kg = 37 GPa, �g = 2.65 g/
m3�, brine �� f = 1.05 g/cm3, vp,f = 1850 m/s�, a mid-porosity
ange typical clean sand Poisson’s ratio ��m = 0.15�, and a critical
orosity �c = 0.42. The regressed fit of �̂ = 1.724 is then used in a
econd regression for �flt, using only the anomalous data, yielding
ˆ

flt = 0.039, which is a plausible average value for the anomalous
ata. The data and fits are shown in Figure 1. From this regression,
e speculate that the anomalous data are probably a mixture of rocks
ith variable sorting characteristics, ranging from nearly clean to
erhaps �flt = 5%, judging from the regressed value �̂flt = 0.039 and
he scatter about the regression.
Because the floating fraction is an unobserved quantity for each
easurement, an important statistical question is how its distribu-

ion can be disentangled from the regression variance �p. The under-
ying distribution of �flt is unknown, but is likely to contain clusters,
ften coinciding with well groups. We have chosen to fix the vari-
nce of �p to that of the regional trend, which accounts for the disper-
ion in the velocities due to conventional effects, and attribute the re-
aining dispersion to the effect of �flt.Amulticluster analysis �using
modified form of MCLUST �Fraley and Raftery, 2003�� of the

nivariate distribution of the residuals �i = vp,i − vreg.trend��i�, with
luster 1 fixed to the regional error �mean 0, variance var���
�vp,reg.

2 � shows the most statistically significant clustering model is
two-cluster split. The data points grouped with the regional trend

re shown circled in Figure 1.
Linearization of the best fit velocity relation vp��,�flt� �equation

� about a suitable mean porosity �̄�0.24 and �̄flt = 0 yields a
traight line approximation

vp = ap + bp��flt + �1 + g��� + �p, �6�

here we have written the three required constants in this way for
onsistency with the notation of DeMartini and Glinsky �2006�. The
zero mean� error term is �p. The linearization is clearly reasonable
or the data clusters of Figure 1.

In DeMartini and Glinsky �2006�, the response to loading is cap-
ured using a standard exponential regression model dependent on
he effective stress �eff, with an additional term describing the grain
apturing effect:

� = a� + b��1 − e−�eff/P0� −
�flt

1 − fc
+ ��. �7�

his expression is a statement that the total space occupied by the
ore fluid and the finer grains is compressed under loading in a con-
entional way, and amounts to a definition of the capture fraction fc.
asin modeling provides estimates of the effective stress, and the
oating fraction estimates from the velocity regression on data clus-

ers then provide a way to estimate a� and fc through fitting. When
his process is performed on the data set here, estimates of fc =
.3522, a� = 1.1, b� = −0.8759, P0 = 5.52 MPa, and ���

= 0.0024
re produced.
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igure 1. Density versus vp log data for clean sands and anomalous
ands, together with nonlinear regression best fits ��flt = 0, 0.039,
espectively, � = 1.724 in both cases�. The straight line regional
rend is the average across a much larger data set for the region, with
pproximate errors as shown.
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R40 Gunning and Glinsky
This model exhibits all the usual characteristics of poorly sorted
rend models. In particular, a plot of vp��,�s − �� versus � �using
quation 5�, corresponding to varying sorting with fixed structural
orosity �s, shows the usual shallow-slope sorting-trend behavior,
omparable with, for example, Figure 1.11 of Avseth et al. �2005�.

THE INVERSION MODEL

The inversion code we use operates on a layer-based model with
ffective-media approximations for the layer properties, a 1D for-
ard convolutional model, linearized rock-physics trend models,

nd approximate Zoeppritz relations for the AVO reflectivity equa-
ions. The layer-top times are the fundamental geometric variables.
ach layer is modeled as a finely laminated mixture of a reservoir
nd member and a nonreservoir end member. The nonreservoir end
ember internal properties are vp, vs, and �. The reservoir end mem-

er internal properties are vp, vs, �, and �flt. The net-to-gross �NG� is
he volume fraction of reservoir end member appearing as fine-scale
orizontal laminations within a particular layer �i.e., has no relation
o the internal composition of the reservoir rock�. Within the reser-
oir end member, the pore-fluid type, saturation, density, and vp are
ossible additional variables.

Geometrically, the moving layer boundaries make this a simple
xample of a marked-point model. The effective-media laws used in
ach layer are, successively, �1� Ruess averaging for pore-scale fluid
ixing in the reservoir end member, �2� Gassmann’s law for fluid

ubstitution in the reservoir end member, and �3� Backus averaging
or laminated sand/shale upscaling using the NG. This produces a set
f effective layer properties for each layer. Synthetic seismic traces
re then generated from the effective layer properties, with reflec-
ions placed at the layer boundaries, using the convolutional model
nd linearized Zoeppritz equations. The reflectivity is taken as a sec-
nd-order �in incidence angle 	� approximation to the �isotropic�
oeppritz reflectivity Rpp of layer 1 above layer 2, namely

Rpp =
1

2
�
�

�
+


vp

vp
� + 	 2�
vp

2vp
−

2vs
2�
�

�
+

2
vs

vs
�

vp
2 � ,

�8�

ith � = ��1 + �2�/2, vp = �vp,1 + vp,2�/2, vs = �vs,1 + vs,2�/2, 
�
�2 − �1, 
vp = vp,2 − vp,1, and 
vs = vs,2 − vs,1. Note that the in-

ersion operates directly on primary rock-physics parameters �layer
imes, velocities, densities, porosities, saturations, etc.�, so the im-
edances and reflectivities merely come along for the ride. Hydro-
arbon-in-place estimates will be driven by the thickness �i.e., vp and
imes�, NG, and porosity, whereas permeability estimates will have a
ontribution from �flt.

The Bayesian framework correctly accounts for all the requisite
ncertainties in the rock physics and stratigraphic geometry in real-
stic models �within the limitations of the linearized rock-physics

odel, the Gaussian noise assumptions, etc.�. The rock-physics
odels constitute the prior specification for the rock properties, and

nterpreted horizons with �usually generous� error bars form the pri-
r for the layer times. Prior distributions of NG, fluid content, and
aturations are established by consultation with the geologist, petro-
hysicist, etc. Quantities that are physically limited in range �e.g., 0
NG�1� are given truncated-Gaussian prior distributions, which
e notate as, e.g., NG � N ��,�2�. The probability weight associ-
TR
ted with the Gaussian tails outside the permissible range is col-
apsed onto the endpoint, so these distributions are a mixture of a
pike�s� and a smooth Gaussian part.

The inversion code uses a Markov Chain Monte Carlo algorithm
o generate a suite of stochastic models from the posterior distribu-
ion, which fully embody the solution to the inverse problem. Inter-
ogation of this posterior ensemble produces �among other things�
est estimates of the rock properties �means, medians�, and the asso-
iated uncertainty �covariances, histograms, etc.�.

This software has an established style of representing loading or
ompaction curves where P-wave velocity is regressed directly
gainst suitable loading terms. The naturally augmented version of
hese regressions suitable for incorporating sorting effects is

vp = Avp
+ Bvp

d + Dvp
�flt + �p� , �9�

� = A� + B� vp + C��flt + ��� , �10�

sing the existing notation in Gunning and Glinsky �2004� �d
loading depth: the LFIV term in that paper is suppressed�. The

hear relation is unchanged. The fully linear form of the prior and the
ssumption of Gaussian regression errors also enables a multi-Gaus-
ian prior to be formulated. For each reservoir layer, this prior has the
onditional form P�vs�vp�P���vp,�flt�P�vp�d,�flt�, where the vari-
nce of each of these Gaussian components comes from the regres-
ion variance, e.g., var��p�� = �p

2. The effective-stress dependence
an be effected by taking the loading depth d�1 − exp�−�eff/P0� if
equired.

Details of how the DeMartini and Glinsky form of the regressions
equations 6 and 7� are coerced into these forms �i.e., equations 9 and
0� are given inAppendix A.

NUMERICAL EXAMPLES

We present here two examples illustrating how the inversion
orks using a floating-grain model fitted to data from the province of

nterest. There are two pay zones of interest. The first example is the
tandard test problem of a single isolated reflector �focusing on the
pper pay�, and the second is a more complex model based on the
ull log data and both pay zones. The region of interest contains vari-
us lithologies, but the main cap rock above the oil-bearing sands is a
hale, so we are chiefly interested in the trend properties of the pay
and and this overlying shale.

We are interested also in the value of near- and far-offset seismic
ata. Since the reflectivity �equation 8� is only O�	 2�, we do not con-
ider very-far-offset �e.g., 55°� data in deference to this limitation:
ar stacks are about 30° in these studies. Similar caveats are applied
n codes that use, e.g., the Shuey approximation �Avseth et al., 2005�.
aturally, the shear velocity vs contributes more substantially to the

eflectivity for the far stack. The far stack amplitudes will thus help
o constrain the vs parameters via the reflectivity �equation 8�, hope-
ully in a complementary fashion to the constraints on vs that are em-
edded in the rock-physics prior model.

The data that informs these examples creates what is convention-
lly called a class IIp AVO effect �Avseth et al., 2005� for the upper
ands �polarity flip occurs between near and far stacks�, which is the
ubject of the first example. The lower sands have more like a class I
ffect, but in both cases the reflection coefficients are relatively
eak. The shifting of classes is caused by the increasing separation
f the impedance trends with depth. In the absence of floating grains,
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Sorting from Bayesian inversion R41
oth events look like class I anomalies, but the reflections are still
elatively weak. It is always worthwhile remembering that the AVO
lassifications are somewhat uncertain because of the seismic noise,
nd that the classification has no explicit role in the inversion formal-
sm.

ock trends for sands and shales

There are no major trending discontinuities expected in the data
et associated with tectonic, overpressuring, or diagenetic effects.
e would expect the trends to be of utility only in basin-local predic-

ion, as is common in calibrated rock-physics models. The clean
and trends are not dissimilar to published trends for the same basin.
he �brine-saturated� shale and sand trends are common to both ex-
mples, so we dispense with these first. Quoted errors are one stan-
ard deviation.

hales

Standard shale trends for the area in question are, with z as depth
elow mudline,

vp = − 1640 + 0.946z�m� ± 145�m/s� , �11�

� = 0.650vp
0.166 ± 0.029�g/cm3� , �12�

vs = − 1027 + 0.801vp ± 63�m/s� . �13�

ands

For the vp relation 5, the clean trend applicable is obtained by a lin-
arization of the fit line shown in Figure 1 �the nonlinear fit to the
lean rock data cluster�, whose maximum-likelihood fit has �
1.724 and material constants as per the accompanying description.
t the mean data porosity �̄ = 0.24, the linearization of equation 5 to

he form equation 6 yields constants ap = 5729 m/s, bp =
9440 m/s, and g = 0.0248, with estimated error �p = 
var��p�
229 m/s.
The loading trend for the pay sands is established in DeMartini

nd Glinsky �2006� as

� = 1.1 − 0.876Zeff − 1.54�flt + ��, �14�

ith Zeff��1 − e−�eff/5.52MPa� and error ��


var���� = 0.0024. Since the shale trends are
gainst z, we have converted this stress regression
equation 14� to a depth trend, since the loading
erm Zeff is very nearly linear in depth over the
epth range of interest. The equivalent pay sand
epth trend �cf. equation 7� is

� = 0.526 − 5.25 
 10−5z�m�

− 1.54�flt + ��. �15�

he last regression coefficient �1.54 = 1/�1
fc�� corresponds to the capture fraction fc

0.35. With the understanding that z now plays
he role of Zeff, the conversion formulas ofAppen-
ix A yield the constants Avp

= 645 m/s, Bvp

0.508, Dvp
= 5494 m/s, A� = 0.592, B� =

1.03
10−4 s/m, and C� = −0.976.

Shale

Laminated
sand

Figure 2. Two
ics from the p
noise level is s
The shear trend for the data regressed directly to yield

vs = − 1218 + 0.894vp ± 69�m/s� . �16�

e have used the clean-sand regional-trend error estimates ���
�

0.0093 and ��p
� �105 m/s in the augmented model, corresponding

o the conventional-effects assumption described earlier.

xample A: A simple model system

The aim here is to determine whether the presence of floating
rain material in the reservoir rock is ascertainable from reflected
mplitudes using the rock-physics model and regional regressions
ust derived. We begin with the simplest two-layer shale/sand sys-
em, which is free of the complication of interference or tuning ef-
ects.

The well logs used to construct the prior have some clean rocks
no floating grains� and rocks with floating content of around 2% to
%. To model the inferability of the float fraction, we constructed
ynthetic seismic truth-case stacks for near- and far-stack angles of a
ew degrees and about 30°, using a truth-case model with 5% float
nd NG = 1, and all other parameters at the most likely values from
he trends. The reservoir fluid is taken as brine for this simple study.
igure 2 illustrates the system, with truth-case plus posterior near
nd far synthetics from the posterior of case �3� we describe below.

For inversion, the prior on floating fraction in the sand fraction of
ayer 2 is taken as NTR�0,0.052�, so the truth case is one standard de-
iation away from the prior mean, and the prior is biased towards
lean sands. We attempt to compute the posterior floating fraction
rom three cases where the amount of laminated shale in layer 2 var-
es. �1� No interbedded shale allowed; the prior on NG in layer 2 is

TR�1,0� �which forces NG = 1�, with near-stack only seismic. �2�
ome interbedded shale permissible; the prior is NG � NTR�1,0.22�
roughly 60% to 100% sand�, with near-stack seismic only. �3� The
ame prior NG � NTR�1,0.22�, but with both near and far stacks. �Re-
ember the inversion code shifts the probability associated with
G�1 on to the endpoint NG = 1, so the prior in cases 2 and 3 is a
0:50 mixture of clean and laminated sands.� Recall that the NG is
ssociated with subseismic shale laminations �not dispersed clay�,
nd the floating fraction is associated with the sandstone lamina. For
hese rocks, increasing layer NG and floating-grain content tend to
ull the upscaled rock properties in approximately similar direc-
ions.
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R42 Gunning and Glinsky
For case 1, Figures 3–5 show three possible forms of the prior,
aried for illustrative purposes, on which we superpose the original
og data, which illustrates how the floating-grain effect smears out
he regional prior. In Figure 3, the model prior is constructed with ar-
ificially narrow �� = 0.002, showing how the parameters arise from
clear 50:50 mixture of clean-rock regression points and an ellipti-
al smear from the effects of the floating grains. The clean rock trend
s obviously far too narrow to embrace the clean well measurements,
ut the clean trend is clearly visible and centered. Recall that the well
ata is from a spread of depths, so it is not expected that the prior �ap-
licable at the reservoir depth only� covers all well data. The differ-
nce between the general effects of increasing loading and increas-
ng floating-grain content is shown. Clearly, a convolution of this

ixture distribution along the depth direction would cover all the
ell data comfortably.

v p 
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, phi (sand porosity)

Increasing
depth

fltIncreasing φ

φ

igure 3. This and Figures 4 and 5 show three pedagogic priors for
elocity versus porosity in a pure sand layer at the reservoir depth.
lean well data points �circles� and float-polluted well data points

squares� are plotted on all three graphs; dots �·� are draws from the
odel prior.
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v p

φ

igure 4. Second illustrative prior: prior drawn from clean rocks
nly �float fraction �flt � NTR�0,0��, with broad porosity uncertainty
� = 0.02. The tails of the distribution do not contain the floating-
rain data comfortably. Clean well data points �circles�, float-pollut-
d well data points �squares�; dots �·� are draws from model prior.
nversion analysis of posteriors

Fixed NG, single (near) stack.—Figures 6 and 7 show salient
catter plots of properties of the sand layer before and after inver-
ion. Figure 8 shows the comparison of the floating-grain distribu-
ion. The peak S/N is set at about 6:1. These and subsequent figures
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igure 5. Third illustrative prior: prior with �� = 0.02 and float frac-
ion �flt distributed as �NTR�0,0.052�. Only a few measurements ap-
ear to lie at the periphery of the distribution, but the mixture charac-
er is not as clear to the eye as in Figure 3. Clean well data points �cir-
les�, float-polluted well data points �squares�; dots �·� are draws
rom model prior.
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igure 6. This and Figure 7 show scatterplots from prior distribution
a and b� and posterior �c and d� for example A �2–layer model with
and below shale�, fixed NG = 1, near stack only. �a and c�
oat�fraction ��flt� versus sand porosity. A perceptible narrowing
round the true answer of �flt = 5% is visible: Fewer clean sands are
roduced in the posterior �see also the prior and posterior histograms
f �flt in Figure 8�. �b� and �d� The sand density versus sand velocity

scatterplot narrows more obviously.
p�sand�
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Sorting from Bayesian inversion R43
se symbols defined in Gunning and Glinsky �2004� as follows: �1�

near and Rfar, defined as Rpp for the near and far stack, from equation
2; �2� overall layer effective density �eff and velocity vp,eff, defined
n equations 9 and 10 of that paper. The inversion is clearly able to
etect the presence of floating grain material and refine the porosity
stimates �see Figure 8�.

Free NG, single (near) stack.—Figure 9 shows salient scatter
lots of properties of the sand layer after inversion, where the model
as additional NG freedom in the prior NG � NTR�1,0.22�.As shown
n Figure 9f, the inversion produces virtually no posterior sharpen-
ng of the NG distribution. If anything, the NG broadens slightly,
erhaps reflecting the ambiguity between shale lamina and floating
rains �using only normal-incidence reflectivity�. Nevertheless, the
oating-grain fraction estimate is still noticeably improved, as is the
orosity �green histogram, Figure 9d and e�.

Free NG, near and far stack.—Inversion using far-offset data in
rinciple may help narrow down floating grain porosities better, as
he far-offset stack carries additional information about the shear ve-
ocity via equation 8. The far stack for this test case is set at about 30°
cf. a few degrees for the near� and the reflected amplitude is much
eaker �AVO effects�. The noise level was set at the same value as

or the near stack.
For this case, it turns out that the far stack eliminates the weak

roadening of the NG estimates �blue histogram, Figure 9f�, and in-
reases the fraction of realizations with appreciable floating grain
ontent by about 50% �blue curve, Figure 9d�. The porosity estimate
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igure 7. More scatterplots from prior distribution �a and b� and pos-
erior �c and d� for exampleA �2-layer model with sand below shale�,
xed NG = 1, near stack only. �a� and �c� The effective reflection co-
fficient Rnear versus layer time t is clearly pinned down sharply. As
sual, these parameters are most heavily constrained. �b� and �d� The
ayer-1 versus layer-2-P wave impedance. Very strong correlations
etween these are induced, but the marginal distribution of each is
ore weakly constrained.
s also noticeably sharpened around the truth-case value, and the
raction of clean sands �high porosity, low floating-grain content� is
arkedly decreased �Figure 9e�. A significant sharpening in the

hear velocities vs and especially the overall far-reflection coeffi-
ient R�far also occurs.

In summary, the test case here appears to show that an inversion is
apable of detecting the presence or absence of floating grain materi-
l for the kinds of rocks studied at the depths of interest, as well as
une up the reservoir porosity estimate.Addition of far stack data ap-
ears to help resolve the ambiguity between NG effects and floating
rain content, and improves the detectability of poorly sorted rocks
y around 50%. The basic reflection coefficients are relatively weak
�R��0.03� for both near and far stacks at this depth, so we regard
his as a significant result for an obviously difficult test case. In con-
rast to our usual experience of Bayesian inversion with imaged seis-

ic data, the updates to the sand/shale NG are very weak, despite the
ncouraging results for floating-grain fraction. This phenomenon is
particular conspiracy of the impedance trends for the rocks in ques-

ion, so this asset appears to be a particularly challenging example.
urther challenges arise in the more complex field example of the
ext section.

xample B: More complex model based on field data

In this example, based on actual field data, the complicating ef-
ects of additional lithologies and tuning considerations come into
lay. The oil reservoir system we model here features upper and low-
r pay sands which are capped by a complex draping structure
ncluding thick, acoustically hard marls and thin, soft, silty layers.
n overall simplified six-layer sequence for the system has been
odeled as �1� marl, �2� silt-marl stringer complex, �3� shale, �4� up-

er sand, �5� shale, and �6� lower sand, where the silt-marl stringer
omplex is an upscaled �impermeable� layer absorbing some of the
ery thin structures in the cap. The near-offset reflectivity from the
arl edge is sufficiently strong to dominate the reflection from the

pper sand top, so much extra information comes from the interface
ith the shale below, and an additional 30° stack whose P-wave

eflectivity is more comparable to the marl. The wavelet used in pro-
ucing the synthetics is a 15.6 Hz Ricker-2, w�t� � �1 − 2�2t2f p

2�
exp�−�2t2f p

2�.
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igure 8. Prior and posterior histograms of �flt in layer 2 of simple
and-shale problem �exampleA, fixed NG = 1, near stack only�.
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R44 Gunning and Glinsky
Figure 10 shows the upscaled layer structure superposed on the
ogs and shale plus sand trends for the model. Note there are distinct
rends for the marl and stringer complex.

The main pay sands are not very clean, and are estimated to have
G values of around 65 ± 10% �on the seismic scale�. Transitions
etween shale lamina and sand are quite distinct. As with all dis-
retized models of multiscale natural systems, there is some art in
locking the well logs so the coarse-scale layers used in the inver-
ion have a sensible interpretation of the NG parameter. The layer
ime-thicknesses are also selected to be seismically resolvable, and
re rarely less than 1/6 of a wavelength. We define NG from coarse-
ayer vertical averages based on conventional facies classification
lgorithms. The forward model uses Backus averaging to handle
ubseismic layering effects, so the NG parameter should be regarded
s a layer-scale parameter; within-layer geologic heterogeneities are
ffectively absorbed into the NG.

Oil is proved in these reservoirs with saturations of around 60%.
or simplicity, we fix the oil probability �set to 1� and saturation �set

o 0.6� in these layers. The floating-grain fraction in the main reser-
oirs is given a prior of NTR�0.02,0.032�, which gives a significant
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igure 9. Example A results. Scatterplots from the posterior for the
rain fraction �flt versus sand porosity �, �b� effective density �eff ve
trong correlation between NG and �flt appears here, with the density
f �flt from the prior �red� and posterior, using only near stack �green�
G in �f�. The truth case porosity is � = 0.17.
rior probability to the zero-float or clean-sand case. The “truth
ase” corresponds to a float fraction of 3.5%. Note that the prior in
hese inversions is sufficiently loose to allow layers 1, 2, or 3 to pinch
ut.

Figure 11 shows some typical “spaghetti plots” of the synthetic
eismic from the posterior plotted against the truth-case data, for
oth stacks. Typical realizations from prior and posterior are also
hown as “layer-cake” images of layers against realization number.

As might be expected, the inversion produces strong updates to
arameters like the layer times, impedances, effective layer velocity,
nd porosity. Some salient results are shown in Figures 12 and 13: In
eneral the most significant improvements occur in the thicker lay-
rs �4, 6�, whereas tuning effects significantly limit what may be in-
erred about the thinner structures. A reasonable improvement in the
oat-fraction estimate occurs, in particular the fact that the posterior
ignificantly reduces the zero float possibility. The most likely pre-
iction is correct at around 0.035. The NG estimates are barely im-
roved, mainly because the upper sand offers a weak impedance
ontrast to its mixing shale when floating grain material is present at
round 3% �the trend curves�. The sensitivity to floating-grain frac-
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Sorting from Bayesian inversion R45
ion is very much higher than that to NG, so the update is stronger.
gain, the far-stack data helps to refine the shear properties signifi-

antly, but this does not couple back through the prior strongly
nough to improve estimates of the quantities of direct interest ��flt,
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igure 10. Example B: Layer-based model truth-case properties for t
or density, P-wave velocity and normal impedance. The succession
he deflections in the sand trend lines are due to the floating-grain term
aused by small cemented sand units that have no large-scale effect o
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, NG� markedly. Though not shown, the far-stack data greatly im-
roves the vp statistics of the shale in layer 5, but not the adjoining
eservoir sands. Overall, however, the improvements over the prior
re not strong in view of the aggressive S/N.
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Figure 11. Inversion results for the six-layer ex-
ample B model shown in Figure 10. �a, d, e�. Syn-
thetic seismic curves �black� for model samples,
superposed on actual data �red�, as drawn from
prior �a, near stack�, and posterior �d, near stack;
e, far stack�. Note the noise level is set very low;
the S/N is at least 10:1. �b and c� Approximately
50-layer realizations from the prior and posterior,
respectively, in time. The layers are shaded in as-
cending grayscale according to layer number.
v
p
 (

nd

04 1.1x1

d

he test
of six la

, and
n the se
0

Real

Po



t
S
fi
p
i
t
t
a
t
t
c
fl
a

R

s
a
m
p
t

t
p
p
t
p
p
t
l
s
e
s
s
c
r
t
t

C

v
m
t

F
�
s

R46 Gunning and Glinsky
In conclusion, the more realistic toy problem here shows that de-
ection of poorly sorted material is possible with very favorable S/N.
everal asset-specific issues make this more difficult than might at
rst be expected. The first is that the reflection at the top of the upper
ay falls in the sidelobe of the very strong reflection from the overly-
ng marl layer, so tuning effects and uncertainties in the modeling of
he cap rock package, in general, limit what may be discerned about
he underlying sand. Secondly, the particular loading behavior char-
cteristic of the pay depth makes the shale impedance quite close to
hat of the sand, so the overall strength of the main reservoir reflec-
ion is notably weaker than other nearby events. In view of the diffi-
ulties, it is relatively consoling that positive information about the
oating-grain contribution can be drawn when very little can be said
bout the NG.

DISCUSSION

ock-physics model

It could be argued that the effects we seek to model warrant a more
ophisticated model of the effects of sorting than that of DeMartini
nd Glinsky �2006�. However, for the regime in which we seek to
ake predictions, we believe this theory to be adequate for our pur-

oses, well fitted to the data, and statistically significant. We note
hat a common feature of all the rock-physics models cited in the In-
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igure 12. Prior �red�, near-stack-only posterior �green�, and both-s
layer 4�. The strange asymmetric layer-4 time posterior in �c� for nea
olved from this stack alone. More revealing detail appears in the sca
roduction is the need for empirical relations or constants at some
oint in the theory, whether at the naive level of the critical-porosity
ower exponents of DeMartini and Glinsky �2006�, critical concen-
rations in Dvorkin and Gutierrez �2002�, the deeper Hertz-Mindlin
lus coordination-number theory in Dvorkin and Nur �1996�, or the
ore-shape factor versus porosity relations of Vernik �1997�. Over
he ranges we seek to predict, the rock-physics effects are close to
inear, and thus it is virtually certain that any credible model using a
ingle parameter to represent sorting will linearize to the forms of
quations 6 and 7. The only likely ornament is a weak effect on the
hear velocity — weak enough to fit within the vp versus vs regres-
ion error already established for the regional trend �see also the dis-
ussion in DeMartini and Glinsky, 2006�. Moreover, to paraphrase a
emark of G. Mavko, probably any appropriate theory chosen from
he literature and well fitted to the data will produce similar predic-
ions.

ommon characteristics of the inversion examples

Some of the more interesting information available from the in-
ersion requires higher-order statistical expressions than simple
eans and standard deviations. In particular, since many of the dis-

ributions are skewed or truncated, examination of histograms or bi-
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ariate scatter plots is more revealing than simple means and stan-
ard deviations.

For example, we show in Table 1 selected properties of the reser-
oir layer ranked by the degree which the standard deviation is re-
uced by the inversion, for the two-stack simple interface example
. The rather modest improvement on the floating fraction estimate

n this table does not fully convey the significant shift in the univari-
te distribution shown in Figure 8 or 9d.

Clearly from Table 1, as one would expect, the geometry �layer
imes� and �between-layer� reflectivities are the best-identified pa-
ameters in the inversion. Any within-layer property per se is much
ess well identified, including the P-wave impedance. Improvements
n the estimation of effective density, fluid porosity, and floating-
rain fraction are all roughly comparable, but less than the P-wave
mpedance update. In this particular environment, the identification
f NG is very problematic, but this is �partly� due to the shale-sand
rend crossover phenomenon, as remarked previously.

As far as univariate statistics go, the same generic findings and
anking hold for the more complicated six-layer model example B.
or bivariate statistics, in both examples, very strong correlations
etween the impedances of adjacent layers are produced �e.g., Fig-
re 7d, coinciding with the sharply defined reflection coefficient�,
ut the univariate posterior distributions of any individual layer im-
edance are nowhere near as sharp. Perhaps counterintuitively, no
trong correlations appear between NG and parameters like porosity
r �flt in the posterior distributions. This is largely because the indi-
idual layer impedances are not especially well pinned down, but
lso because the reservoir layer impedance does not correlate strong-
y with NG �at this depth�. Since the narrowing of the layer imped-
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igure 13. �a–d� Scatterplots of selected property pairs from the nea
uning-ambiguity effects in the delineation of layer 3 which are not re
ions permit pinchouts in thin layer 3. �e and f� The additional stack re
sand and layer 5 shale, showing how the far stack induces the expe

ignificantly reduce the uncertainty in most of the histograms of Figu
nce is obviously an upper bound on what may be inferred about any
articular rock property within a layer, the modest findings of Table
are no surprise.
The fundamental limitations on inference are set by the parame-

ers that control the overall statistical spread in the layer impedance.
hese come down ultimately to the regression errors in fitting the re-
ional trends, and it should be clear that tight characterization of the
onreservoir facies is equally important to that of the reservoir
ocks. Figure 7d, for example, illustrates clearly that the prior rock-
hysics uncertainties in impedance are much greater than the rela-
ive impedance change commanded by the seismic amplitudes �for
his particular data set�. In terms of posterior sharpening, the sorting
haracterization parameter �flt seems to fare not much worse than
ther classical rock parameters like the P-wave velocity and porosi-
y, if we make the judgment on the standard deviation alone.Arough
nd ready argument corroborating the results of Table 1 is this: using
ealizations from the prior distribution of example A, case 2, the
-wave impedance regresses directly against vp, �, �flt, or NG with
earson r2 values of of 0.95, 0.88, 0.71, and 0.03, respectively. This

s exactly the relative ordering of the standard deviation improve-
ent we see, with roughly the same quality of improvement. Again,

he improvement in �flt is best understood in terms of the refinement
f the posterior histograms, as per Figures 8, 9c, and 12a.

Alikely and commonsense generalization is that the inference im-
rovement for any parameter �including sorting� is the improvement
f the impedance multiplied by the fraction of the variance of the im-
edance accounted for by that parameter. This generic principle
hould hold true for other data sets and environments.
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CONCLUSION

The quantitative floating-grain rock-physics model of DeMartini
nd Glinsky has been incorporated into a model-based Bayesian
eismic inversion code to assess the inferability of sorting character-
stics from seismic data. Development of the requisite trend models
equires careful log and core analysis and some simple nonlinear re-
ression studies. The simple synthetic inversion studies we present
re closely based on actual asset data, and show that genuinely im-
roved estimates of the floating-grain or sorting characteristics, plus
he reservoir porosity, are possible if the seismic data has sufficient
/N. For peak S/N of about 6:1 the examples show about 25% and
5% improvements in standard deviations for porosity and floating-
rain fraction, respectively. Moreover, since the posterior distribu-
ion of floating grain content is a mixture, the full histogram or mar-
inal is more interesting than the first- and second-order statistics
lone: Our test cases are examples where the posterior separates
learly into two clusters of clean and poorly sorted rocks.

The refinements in porosity and floating-grain fraction estimates
re a modest fraction of the relative improvements in estimation of
he layer impedance. We predict the methodologies of this paper will
e useful in inferring sorting characteristics whenever the sorting pa-
ameter correlates strongly with impedance, and effects of sorting
re in a significantly different direction from that of shale lamina-
ions. The first condition is usually satisfied, but the second may vary
ubstantially with local geology. For the cases studied, far-offset
ata was shown to assist in discrimination of poorly sorted rocks by
n extra factor of up to 50%.

The asset in question has some particular challenges associated
ith a relatively weak reservoir reflection coefficient and complex

uning interference from a hard marl above the reservoir cap, so we
egard it as a difficult test case. The inversion techniques for rock
uality demonstrated in this paper can be expected to produce sharp-
r posterior updates for data sets free of these particular conspira-
ies.

able 1. Prior and posterior standard deviations of selected p
eservoir layer (layer 2) from the two-stack inversion of exam
re ranked by decreasing order of sensitivity, as computed fro
olumn (posterior/prior).

Property

Prior
standard
deviation

Posteri
standar
deviatio

R�near 0.044 0.00

layer-time �ms� 10.00 0.80

R�far 0.027 0.00

P-wave impedance �g/cm3�
 �ft/s� 1900.00 1240.00

vp �sand end member, ft/s� 565.00 372.00

� 0.04 0.03

�eff �g/cm3� 0.065 0.05

�flt 0.025 0.02

NG 0.11 0.12
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APPENDIX A

CONVERSION OF
REGRESSION FORMULAS

Approximate conversion to the Gunning and
Glinsky �2004� form of the coupled regressions
�i.e., equations 9 and 10� from the DeMartini and
Glinsky style �equations 6 and 7� can be derived
by simple algebra and assumption of indepen-
dence of errors. The result is

Avp
= ap + bp�1 + g�a�, �A-1�

Bvp
= bpb��1 + g� , �A-2�

Dvp
= bp�1 −

1 + g

1 − fc
� , �A-3�

A� = −
ap

bp�1 + g�
, �A-4�

B� =
1

bp�1 + g�
, �A-5�

C� = −
1

1 + g
, �A-6�

��p
� = 
��p

2 + �bp�1 + g��2���

2 , �A-7�

���
� =

��p

�bp�1 + g��
. �A-8�

APPENDIX B

IMPLEMENTATION DETAILS

The inversion code �Gunning and Glinsky, 2004� works with two
ersions of the model vector m. The vector m has a fully Gaussian
rior, with no truncations or restrictions on values. The physical
odel vector m�, which is used in the forward model and its associ-

ted likelihoods �seismic, isopachs� is obtained by applying time or-
erings and truncations �e.g., of NG or saturations� to m, i.e., m�
f�m�, where f�� embeds these rules. The truncation effectively in-

uces a prior which, for simple properties like NG, is a mixture of a
runcated Gaussian distribution and delta functions at endpoints.

ies of the
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With the augmented models defined by equations 9 and 10, the
inearity means the prior is still Gaussian, but the truncation of �flt in

� must be handled with care. The extra coefficients Dvp
, C� have the

ffect of placing the prior on inclined ellipsoids in e.g., the 	vp,�flt

lane, so pure truncation on �flt has the effect of smearing the tail of
he distribution onto the plane �flt = 0 in a direction off the principal
xes. This is clearly an undesirable way to handle the prior. Figure
-1 shows a scatter plot of points produced from a prior constructed

n this naive way, with the obvious artifacts. A more reasonable way
o handle the truncation is with the mappings �only for �flt�0�:

vp� = vp − Dvp
�flt, �B-1�

�� = � + B��vp� − vp� − C��flt, �B-2�

vs� = vs + Bvs
�vp� − vp� , �B-3�

�flt� = 0, �B-4�

hich forces the remapping to occur along directions parallel to the
rincipal axes.

This mapping minimizes the difference �m� − m�TCP
−1�m� − m�,

ubject to the positivity constraint, which seems a reasonable formu-
ation. The prior will then be a mixture of clean rocks ��flt = 0� and
oorly sorted rocks distributed along the ellipsoid with �flt�0
Note that the actual Gassman fluid substitution calculation that

ccurs later in the forward model uses only the pure fluids �oil, gas,
tc.�, as the Gassman-like effect of the floating-grain presence is im-
licitly accounted for by the floating-grain terms in the modified re-
ressions.
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