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Resolution and uncertainty in 1D CSEM inversion: A Bayesian approach

and open-source implementation

James Gunning', Michael E. Glinsky?, and John Hedditch®

ABSTRACT

Resolution and uncertainty in controlled-source electro-
magnetic (CSEM) inversion is most naturally approached us-
ing a Bayesian framework. Resolution can be inferred by hi-
erarchical models with free parameters for effective correla-
tion lengths (“Bayesian smoothing”), or model-choice
frameworks applied to variable resolution spatial models
(Bayesian splitting/merging). Typical 1D CSEM data can be
modeled with quite parsimonious models, typically O(10)
parameters per common midpoint. Efficient optimizations
for the CSEM problem must address the challenges of poor
scaling, strong nonlinearity, multimodality and the necessity
of bound constraints. The posterior parameter uncertainties
are frequently controlled by the nonlinearity, and linearized
approaches to uncertainty usually are very poor. In Markov
Chain Monte Carlo (MCMC) approaches, the nonlinearity
and poor scaling make good mixing hard to achieve. Anovel,
approximate frequentist method we call the Bayesianized
parametric bootstrap (sometimes called randomized maxi-
mum likelihood) is much more efficient than MCMC in this
problem, considerably better than linearized analysis but
tends to modestly overstate uncertainties. The software that
implements these ideas for the 1D CSEM problem is made
available under an open-source license agreement.

INTRODUCTION

In recent years, controlled-source electromagnetic (CSEM) or
seabed logging (SBL) techniques have become a popular element of
the hydrocarbon exploration toolkit. This method is designed to de-
tect resistive anomalies in the marine subsurface which might be
caused by hydrocarbon accumulations. Taken in conjunction with
seismic data for geological and structural delineation, this is poten-

tially a powerful discriminator between high- and low-gas satura-
tions, because gas saturation controls resistivity in a far more linear
fashion than it does seismic reflectivity in AVO studies. The CSEM
technique is most useful when sufficient geological knowledge is
available to exclude lithological causes of high-resistivity near
anomalous zones, such as sequences of evaporites, volcanics, or car-
bonates.

Many articles have appeared outlining the general nature of the
CSEM acquisition framework (Constable (2006), Constable and
Srnka (2007), Tompkins and Srnka (2007). There are practical limi-
tations on the suitability of the technique originating in basic physics
principles, such as the impact of the airwave in shallower waters, the
limitations on depth of penetration and detectability imposed by ab-
sorption, and the thermal noise of the transmitter-receiver system,
frequency content restrictions from skin depths, etc. A large number
of offshore petroleum prospects still fall within the domain of appli-
cability of the technique.

In our view, two overriding factors limit the usefulness of the tech-
nique. First is that deeper penetrations require low frequencies, and
the diffusive energy fronts do not justify sounding arrays with spac-
ings very much smaller than the depth of interest, which automati-
cally limits resolution. Second, the dynamic range of conductivity
from seawater to resistive anomalies or deeper rocks usually is at
least several decades. These large contrasts in resistivity make the
changes in observed fields large and thus useful in an exploration
context, but make the inverse problem very nonlinear. In an inverse-
problem context, the subsurface response is very poorly modeled as
a weak deviation from some agnostic reference model, so the Born
approximation, so beloved and central to seismic imaging, is rarely
very useful for real CSEM data. Because the forward model is
strongly nonlinear in any resistivity parameter, the solution null
space nearly always is multimodal, badly scaled, and contorted in
shape. We agree strongly with Snieder (1998) that this makes these
problems particularly difficult.

Meaningful 2D or 3D CSEM inversion thus is a difficult problem.
The strong absorption induces a large dynamic range in the gradient
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or sensitivity matrices, and because this makes the problem very
poorly scaled, nearly all inverse approaches require additional terms
to improve the stability or conditioning of the matrices. For diverse
reasons, the bulk of the inverse-theoretical work done in the EM
community is not overtly statistical in nature, but rather approaches
the stability problem using pragmatic Tikhonov-regularization
methods. This introduces the awkward problem of how to estimate
the free parameters in these regularizing operators and make mean-
ingful statements about what these pieces imply about model resolu-
tion and uncertainty. Regularization, in our view, is an unsatisfactory
framework for the problem of integrating other kinds of information,
like rock-physics models, or data from seismic acquisition.

Most of these conceptual difficulties disappear if a more explicitly
statistical approach is taken to the inverse problem. Evans and Stark
(2002) put the case eloquently: “Describing inverse problems in sta-
tistical language permits a unified view of standard inversion tech-
niques, and provides reasonable criteria for choosing among them.”
Sambridge et al. (2006) provide a theoretical framework strongly
aligned with ours and offer a useful summary of the Bayesian ap-
proach to inverse problems and model selection.

Bayesian frameworks allow inverse problems to be stated as in-
ference problems for the posterior distribution of a suite of model pa-
rameters and possible metaparameters, and questions about resolu-
tion or uncertainty are answerable directly from this posterior distri-
bution. Two recent geophysical examples using empirical-Bayes
ideas for metaparameter estimation are Malinverno and Parker
(2006) and Mitsuhata (2004). Because such statements are condi-
tional on the chosen model, a framework that enables sensible com-
parison of different models, or families of models — even of varying
dimensionality — is very desirable (Hoeting et al., 1999). Bayesian
approaches also are the most natural way to introduce knowledge
from other data sources or professional expertise with its requisite
precision and interdependencies, via additional likelihood terms or
priors. Multidisciplinary information of this form is germane to
earth resources delineation.

In this paper we show two new Bayesian approaches to the ques-
tion of resolution and uncertainty for the CSEM problem and intro-
duce the open-source reference code DeliveryCSEM, implementing
these ideas for the 1D problem. This paper and the code implementa-
tion are confined to the isotropic case, though it is now recognized
that modest electrical anisotropy is more common than not. The cen-
tral ideas of this paper will extend readily to the anisotropic case, and
the presentation is simplified when we need not carry the tensorial
notational baggage along.

We do not wish to be misconstrued as advocating isotropic 1D in-
versions for problems that are clearly dominated by 3D effects or
other forward-modeling issues. Nonetheless, for reasonably flat ge-
ometries without significant bathymetry issues, the 1D approach is a
good first approximation to the 3D earth. Much can be learned about
the limits of resolution and inversion uncertainties by a successful
attack on the 1D problem.

We do not focus on the virtues or drawbacks of acquisitional de-
tails such as the number of frequencies to be measured, types of
fields to be recorded, use of phase, or other similar details. Other pa-
pers, for example Key (2009), take up these issues. Our central
themes are resolution and uncertainty via Bayesian approaches, so
the bulk of this paper is devoted to these topics. The novel contribu-
tions of this paper are the application of model-selection, empirical-
Bayes, and Bayesianized bootstrap ideas to CSEM applications.

The layout of this paper is as follows. In “Approaches to resolu-

tion issues,” we introduce the central ideas needed for Bayesian ap-
proaches to resolution inference. In “Constrained Bayesian inver-
sion,” we present the machinery needed for resolution approaches
based on variable correlated priors on a fixed grid. “Model hierar-
chies — splitting methods,” shows how this machinery can be used
to infer resolution via model choice, with the spatial correlations
switched off and the Bayesian model choice operating over models
of varying spatial discretization. The fundamental workhorse in both
approaches is an efficient globalized, bound-constrained nonlinear
least-squares optimization, so we Vvisit several important topics in
“Optimization details:” efficient bound-constrained Gauss-Newton
and Marquardt techniques, multimodality and global optimization/
enumeration, and mode distinguishability or connectivity. Two
methods for uncertainty evaluation follow in the section titled “Ap-
proaches to inversion uncertainty,” one fully Bayesian (MCMC), the
other a faster, approximate technique we call the Bayesianized para-
metric bootstrap. Some “Example problems” are presented to illus-
trate all the various ideas, followed by a brief discussion of the “Soft-
ware,” and the “Conclusions.”

APPROACHES TO RESOLUTION ISSUES

Resolution is most effectively understood as an interaction be-
tween the spatial representation (gridding) of an inversion model
and the effective number of degrees of freedom which can be esti-
mated meaningfully from the data. From this angle, there are two
distinct approaches to resolution. First, if a somewhat fine spatial
model m is supplemented by well-chosen metaparameters 6 ex-
pressing effective spatial correlation, the resolution is embodied in
the marginal distribution for the correlation parameters 6 given the
data. Overfitted, or excessively deconvolved, models correspond to
low-probability regions of the correlation-parameter posterior mar-
ginal distribution(s). Second, resolution can be approached as a
model-selection problem of choosing, among a family of models k
= 1...N of varying spatial discretization, the model or models hav-
ing most posterior support in the data. Clearly the measure of support
implied here must incorporate automatic penalties for overfitting, so
the statistical significance of the models is the central issue.

Both of these approaches can be expressed in a Bayesian frame-
work. We use the usual notation L (d|m) for the likelihood of the data
d (Iength n,) under model m, and p(m) for the prior probability of the
parameters in model m. The likelihood often is the most contentious
part of any Bayesian framework. It depends centrally on a model for
the “effective” noise, which is defined as the difference between
modeled and (processed) data. This difference clearly absorbs in-
strumental noise, external and cultural noise, and errors in the for-
ward modeling assumptions. Rarely is it beyond dispute that the
computer model adequately models the physics. One often works
with the pragmatic assumption that the data are well-processed (mis-
takes/outliers removed etc.), the errors are zero-mean independent,
and the dominant unknown is the variance of the error. For analytical
convenience, Gaussian error models are most useful, so the likeli-
hood often is of the form L(d/m) ~exp(—%(d — fm)'c,'(d
— f(m))), with f(m) the forward model for the data, and the un-
known noise parameters o; buried in the matrix Cp, = diag{c?}.
Some kind of dilution of this likelihood distribution might be re-
quired to model correlated or biased data.

To provide some context, the 1D forward CSEM problem consid-
ered here is a layer-based model, usually with the transmitter close
(=30 m) to the seafloor, receivers for electric or magnetic fields on
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the seafloor, known resistivity through the seawater profile, and un-
known resistivity in each of some 71,,,; layers under the mudline, ter-
minating in a half-space. The forward problem and sensitivity ma-
trix df;/ dm; for this configuration is a well-studied problem (Consta-
ble et al., 1987; Key, 2009), with received fields a simple sum of
Hankel transforms with kernels arising from reflectivity recursions
running down the stack of layers. The measurements d; are taken as
electric or magnetic fields, unrolled over frequency and transmitter-
receiver offset. Typically, the noise estimates o, initially are estimat-
ed at some fraction of the field amplitude, say 5%, so these have a
large dynamic range. (The large range is required by the absorption
of modeling errors as much as anything else). The acquisition usual-
ly attempts to keep the source dipole a constant height over the sea-
floor, and this can be used to advantage in splining the fast Hankel
transforms in the forward model to retrieve fields at all offsets for a
given frequency and transmitter height.

In the model selection problem, the central entity is the marginal
model likelihood (MML), or evidence, obtained by integrating the
Bayesian posterior density over the model parameters m in model &:

mvm(k) = fL(d|m)p(m)dm.

In general, the integral is quite difficult to perform, but approxi-
mations like the Laplace approximation are very effective if the pos-
terior is modestly compact (Raftery, 1996). It is known that the
Laplace approximation behaves asymptotically like the Bayes infor-
mation criterion (BIC) (Denison et al., 2002), and thus has the re-
quired “Occamist” characteristic of favoring the simplest model that
adequately explains the data.

It is less obvious how the notion of “simplicity” is quantified and
induced in the context of single models with metaparameters. Al-
though a strict Bayesian would confine the statement of “posterior
knowledge” to the full posterior distribution, certain characteristics
of this distribution usually are of significant interest as point esti-
mates. In particular (1) the largest mode of the joint posterior distri-
bution — usually called the maximum a posteriori point (MAP), and
(2) the MAP point of particular marginal distributions, are of inter-
est. Within the extremely common multiGaussian framework for
noise and prior distributions, possibility (1) coincides with the mini-
ma of the negative log-posterior, a function which often closely re-
sembles typical “objective” functions used in regularization ap-
proaches.

Statisticians of all flavors reflexively associate point-estimates
with maxima of probability functions, and maximum-likelihood
methods are virtually canonical in the statistical community. Under
Gaussian error models, these invariably lead to least-squares mini-
mization problems. For this reason, regularization approaches based
on the optimization of penalized objective functions like

? (1)

where w is a “free” parameter, and D is an operator whose null space
does not overlap that of the forward model in x 2 (m), always seem
philosophically unsatisfactory because the mathematical optimum
clearly is at u = 0. Statisticians instinctively will feel that something
is missing from the “objective function” that favors simplicity (large
).

A well-known approach to this difficulty is Morozov’s discrepan-
cy principle (Hansen, 1998). Assuming the model is rich enough to
potentially overfit the data, the multiplier x can be set by minimizing

X2 (m.p) = Xmisi(m) + p|Dm

equation 1 to a desired level of misfit, say, x 2 (m) = n,. It is diffi-
cult to make statements about a strongly nonlinear problem with
great confidence, but we might take inspiration from what is known
about the linear case: Hansen’s discussions are quite extensive, and
recommend, roughly, x2. =~ns — n,, where there are n, effective
degrees of freedom. Essentially, the target value n, — n, is based on
the known frequentist result in linear regression that the (error-
scaled) residual sum of squares has expectation n, — n,, if the regres-
sion model is the same as that producing the data, and the error vari-
ance is correct.

Use of the discrepancy principle is central to the well-known Oc-
cam code of Constable et al. (1987), but this framework does not
yield a point estimate that is obviously the maximum of some distri-
bution. A common criticism is that the technique is rather sensitive to
the noise levels buried inside x2,;(m), and in practice these usually
are poorly known (Farquharson and Oldenburg, 2004; Mitsuhata,
2004). Pessimistic estimates lead to oversmoothed solutions, and
overoptimistic estimates might prevent convergence at all. It is com-
mon to see target values x>, = 1y invoked, even for rather rich
models, and Hansen has demonstrated this leads to oversmoothing
in the linear context.

In a Bayesian approach, maximum likelihood estimation is possi-
ble for problems with smoothing contributions (), but it is neces-
sary to treat the smoothing parameters as genuine metaparameters in
a hierarchical framework. The normalization associated with the
metaparameters then introduces the contributions that favor large
values of the smoothing and compete with the data misfit terms. A
Bayesian approach naturally will induce simplicity in the choice
among models and in the inference of metaparameters (e.g., smooth-
ing) within a model, so Occam’s razor is a natural consequence.
Thus we would see “variable-smoothing” type inversions as a spe-
cial kind of Bayesian inversion, rather than a different approach.
Parker (1994) has remarked that the Occam approach is “...lacking
theoretical underpinnings, but... has been found to be remarkably
effective in practice.” We believe the Bayesian approach described
in the following section, using spatial correlation as a metaparam-
eter, supplies this missing theory.

Some known invariances for the 1D CSEM problem are useful to
recall at this point. Loseth (2007) has shown that if a subsurface re-
sistive layer is present against a more typical (say 1 {}.m) conduc-
tive background, the dominant mode of energy transmission is a TM
mode, with vertical electric field. His analytical approximations for
the Hankel transforms show that this response is controlled by the re-
sistivity-thickness product of the anomalous layer. We expect then
that the response of a packet of layers thinner than the “natural” data
resolution is controlled by the resistivity-thickness product of the ef-
fective medium formed by these layers. This forms a useful test case
for many of the subsequent ideas.

CONSTRAINED BAYESIAN INVERSION FOR
MODEL, NOISE, AND SPATIAL CORRELATION

Our inversion code can perform several flavors of inversion, all of
which can be understood as special cases of the following general
framework. We are interested in inverting for n, model parameters
m; = logy, p; (the layer resistivities are p;), jointly with metaparam-
eter-parameters describing spatial correlation structures () or pa-
rameters of the noise distribution (¢ ,,). The full parameter vector is
M ={m,u,o,}.

A standard Bayesian approach to inversion (Tarantola, 1987),
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based on a multiGaussian model of the errors and with a multiGauss-
ian expression for the prior with prior mean m, and covariance
C,(w), yields a posterior density

—(d—Fm)) Cylo,)” " @—F(m))2

@m)"d?|Cyo,)|"?

I(Md) ~

e~ (m — mp)TCp(,u) “lm— m,)/2

Q@m)"2IC, ()"

2)

Here n, is the number of measurements, and we will consider the
particular case where C,(a,) = o2 diag{ %}, the covariance matrix
of the total error, is assumed diagonal and known up to the scalar o2
Similarly, the unknown metaparameter-parameters p might appear
in C,(u). For normalization and model-comparison purposes, the
determinant terms and dependencies on n, are important.

The first problem is which choice of prior is suitable for a particu-
lar model-layer resistivity. Typical CSEM hydrocarbon applications
will occur in clastic-dominated areas, where shale abundances might
be 80% or so. The model-layer resistivity is an “effective medium”
property of a rock composite, whose (frequency) distribution is a
complex function of rock-type abundances, the internal spatial ar-
rangement of rock types, the internal variability within a rock type,
and the effective-medium laws. In general, we should expect it to be
a complex mixture distribution resulting from these factors. A rigor-
ous calculation is doubtless rather subjective, but we can say a few
definite things: It will have a heavy right tail, resulting from the light-
er abundances of low-porosity facies, and it is reasonable to apply a
strict lower bound, computed from the Hashin-Shtrikman lower
bound on brine and shale-matrix mixtures via sensible upper-bounds
on shale porosity (e.g., 50%). A typical, credible number is p
= 0.8 Om (log,o(p) = —0.1). A truncated Gaussian distribution for
m = logy(p) can be used to cover the prior support comfortably, has
these required properties, and the added advantage of analytical con-
venience. If bounds are not applied, the logarithmic transform re-
tains the advantage of guaranteeing positive resistivities.

Spatial smoothness-type beliefs about the model can be expressed
by embedding spatial correlation into the multivariate prior distribu-
tion for the model parameters. We will use forms derived for the un-
bounded cases and impose constraints for the bounded case as re-
quired. A convenient form to work with is the Gaussian prior p(m)
= N(m,,C,), where m,, is a prior mean or prejudice about the sub-
surface structure. It is reasonable to suppose the prior marginal vari-
ance of any layer parameter (as imposed by the mixture distribution
approximations above) to be independent of any vertical correlation.
Thusitis simpler to specify C, directly, rather than C,; !, as the diago-
nal elements contain the prior marginal variances. Specifically, if
there are i = 1...n, layer parameters m;, whose prior marginal stan-
dard deviations are set to acommon value o, the exponential corre-
lation matrix C,; = o exp(—ali — j|) is a convenient possible
form for C,,, with a “lattice” correlation length 1/ a.

To forestall confusion, we emphasize that we will make inferenc-
es about an effective correlation length 1/ a for the large-scale resis-
tivity parameters m, as estimated by CSEM data solely, and not to be
confused with correlation lengths inferred, for example, from wire-
line or core data. Although the correlation length might be argued to
be an intrinsic geological property, a Bayes MAP estimate of this ef-
fective correlation length suggests the resolution characteristics of
the measuring technique used to acquire the data.

Now C, has a tridiagonal inverse which, for convenient compari-

son with other literature using the discrepancy principle, can be writ-
ten in the form

—1 . 2 2 2 2 2
C, () = ud'9 + diag{W, W, ., W, ... . W2, W, |},

where dis the n,, X n,, finite-difference derivative matrix

-1 1 0 0
o=l 0 -1 1 0 |

and the correlation length 1/« is related to the “regularizing
strength” u by

alu) = sinh_1< ! 2) .
2po,
(Further connections of the inverse covariance implied by the regu-
larizing matrix d with geostatistical ideas are drawn out in Kitanidis
[1999].) Maintaining the prior standard deviation requires that the
weights W, vary with p also

1
W=, 3
Pl 0'12,(1—}—6_"‘) 3
l1—e @
W2y= ———— 4
2 0'12,(14-6_(1) “

Clearly, o and u are alternative ways to track the exponentially
correlated prior; we will use the parameter u henceforth as the meta-
parameter. Thus, if we define W,(u) = diag{W, ,W>, W>,....,
W2 ,.W> 1}, the inverse thenis C, '(u) = ud™d + W, ().

In the absence of correlation (¢ — %, or u = 0), the W,,; are relat-
ed to the prior marginal standard deviation o, by W,; = 1/0,. The
determinant |C,| = o"»(1 — e~2)» !, with the property | C,| — 0 as
a—0, is helpful to know. The question of how to choose a suitable
prior distribution for u is rather tricky. Fortunately, the posterior dis-
tribution for u is only very weakly influenced by the prior, so we use
aflat prior on u for simplicity.

The noise parameter o, is a global scalar correction term for the
(white) Gaussian noise distribution, and we presume the error esti-
mates o; in C,(c,) = o> diag{o?} are sensible estimates based on
preliminary data analysis, e.g., 5% of the expected field amplitude,
down to some typical noise floor for the receivers. (Absolute noise
floors are dependent on electronics design, possibly electrode chem-
istry, receiver motion, stacking and processing considerations, etc.,
and are typically around 10~"° V/Am? for E fields, 10~ '8 T/ Am for
B). This absorbs measurement and modeling errors. The additional
term o, is an O( 1) correction parameter, corresponding fairly close-
ly to the “unknown variance” parameter of traditional Bayesian re-
gression treatments, e.g., Gelman et al. (1995). We will take the prior
P(a,) to be flat (constant) for simplicity.

There are two possible approaches to the inference problem at this
point: pure maximum a posteriori or empirical Bayes. The general
ideas are easier to see in the fully linear problem, which, for reasons
of space, we have supplied in the supplementary material Appendix
C of Gunning (2010). This material supplies some derivation details
we skip in the following. The first and simplest idea is a pure “maxi-
mum a posteriori” approach, setting inferences at a global minimum
of the negative log posterior of the full joint distribution in m, u,o .
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This objective function in the optimization step could be written
(dropping n, log(27r) and log|diag{ a}|) as

-2 IOg(H(m,,LL,O'n|d))
=x*=(d—F(m))"Cy(c,)”'(d — F(m))
+nglog(oy) + (m —m,)"(wd"0 + W,)(m —m,)
— log(|ud’d + W,|) + n, log(2m). (5)

Where the prior has weak influence and the degrees of freedom
are few, this is a simple and effective approach. The estimates of u
will be biased if the data are too noisy, however, as shown in the sup-
plementary Appendix C (Gunning, 2010).

The smoothing and noise parameters really are meta-parameter in
a hierarchical construction. The empirical Bayes (EB) approach is to
estimate these parameters at the maximum likelihood point of their
marginal distribution, which is known to be less biased than the joint
maximum-a posteriori method. The derivations for the EB case are
somewhat messier, so we will show how things run for the joint max-
imum-a posteriori case first and summarize the EB results later.

In the joint maximum-a posteriori case, we minimize equation 5
by cyclically alternating minimizations on o, u, and m, which is
not inefficient if the three blocks are not strongly correlated in the
posterior.4 The minimization on o, involves only the first two terms
and is trivially a standard ML variance estimate:

2 [d=Fm)’C;'(d ~ F(m))

ng

Substituting this again into equation 5, and dropping some con-
stants, yields the reduced objective

X7 = n4(1 +log((d — F(m))"C; '(d — F(m))/n,))
+(m—m,) (ud’o +W,)(m —m,)
— log(|ud’a + W,|). (6)

The optimization on w then involves only the last two terms, a prob-
lem we can write as

Xmoom(®) = (m — m) ("8 + W,())(m — m,)
— log(|ud’d + W, (w)]).

The determinant must be evaluated numerically in general (an
O(n,,) operation because 970 is tridiagonal), and this problem can be
solved using any suitable 1D optimization routine, e.g., Brent’s
method (Press et al., 1992). We have found it prudent to step-limit
the optimum found in this phase to within a trust region centered on
the current value of u, typically u = 0.5.

The final optimization in the cycle is for m. For small changes in
m about a current model my, by linearizing the log( ) expression, the
varying terms in equation 6 needed for the optimization can be writ-
ten as

Xo=(d—Fm))’C;'(d - F(m))/o,
+(m—m,) (ud’0 + W,)(m —m,). (7)

The Gauss-Newton step thus is the standard Bayesian update,
with the data covariance merely adjusted by the current noise esti-

mate o-2. The full Newton update for this optimum, with the Jacobian
J;;=0F;/omj,is

1 B —1
m’ = (—ZJTCd U+ pa’o + W,,)

1 _
X(?JTC(, '(d — F(m) + Jm) + (uo"9 + Wp)mp>.

Another important traditional form for the Newton step Am=m’
—mis

n

1 =]
Am = (pJTC,, 1+ uo’o + W,,)

H

x (%ﬂcg (d — F(m)) + (ud"a + W,)(m, - m>),
g

n

-Vxg, (8)

with implied Hessian H and gradient V x2,.

For the cases where no estimation of o, is desired, the same for-
malism applies, except the optimization on ¢, is omitted and o, — 1
everywhere else. Similarly, if no optimization on w is performed,
is fixed at the desired value in all equations.

For the EB case, the derivations follow a similar spirit to supple-
mentary Appendix C in Gunning (2010), save that one uses local lin-
earization and the Laplace approximation in estimating the marginal
distribution (marginal) for w. The mode of the marginal for o, is
straightforward, yielding the classical unbiased estimate

y2— (@~ F(m)’C; (@ — F(m))

n

nd—nl,

and to a good approximation the marginal IT(u,0,|d) for
has an additional term in the optimization (II(u,0,|d)

~exp( — Xamoon( #)/2)):
X?mooth(lu') = (m - mp)T(,U/aTa + WP(M))(m - l‘llp)
— log(|ud’a + W,(w)))

1
;JTCL,J + ud"o + W, ()

n

+ log(

9)

Clearly, there is nothing particularly magical about the choice of
the exponentially correlated prior. We have chosen it because the in-
verse (the “precision matrix”) maps closely to the sorts of structures
used in regularization approaches (i.e., the connection and differenc-
es are clear), and the determinant is simple. Other choices could be
made, and blockwise forms arising from the use of “tear-surfaces”
(discontinuities in the correlation) also would pass through the fore-
going derivation simply.

Example of resolution via correlation meta-parameters:
Bayesian smoothing

An example of how the empirical Bayes apparatus works, for
fixed known noise, but unknown correlation parameter w, is shown

*Thisisa good assumption for o, and m (a well known statistical phenomenon), but probably not for x and m: a joint Newton scheme would be much better for

the latter pair.
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in Figure 1. Synthetic data (inline | E] field at 0.25, 0.75, 1.25 Hz,
over offsets 1—12 km) for the depicted “truth-case” model are gen-
erated with varying noise levels by adding independent Gaussian
noise deviates of the required standard deviation (e.g., 0.05| E| for
5% errors) to | E|. The uneven sampling (dropouts, etc.,) is inherited
from a real data set “template,” but the model and data all are syn-
thetic. The inversion model is quite finely discretized, using layers of
approximately 50 m to 100 m, and the marginal priors for each lay-
erare setatm;~N(0,1).

MODEL HIERARCHIES — SPLITTING METHODS

Another approach to resolution is to perform model-selection on a
set of models of increasing spatial resolution. Clearly, an exhaustive
enumeration of a full suite of possible layer-grids, using, say, the the-
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Figure 1. (a) Bayesian smoothing MAP inversions (u as a meta-

parameter{ of CSEM data for the “truth-case” model shown, for
noise levels 10%, 5%, and 2%. Though the termination at the opti-

mum is not explicitly controlled by xzus=[(d — F(m))’C;'(d
—F(m))/ny]"2, xius values are typically O(1) at the optimum; in
this case, 1.21, 1.09, 1.02, respectively. Clearly resolution is strongly
dependent on noise levels. (b) Typical data and fit at 5% noise. Note
the error bars apply to | E|, not log,| E|, despite the scales.

ory of integer partitions based on some finer underlying lattice, will
produce a huge (combinatorially large) number of possible models.
These cannot be computed exhaustively, so some kind of heuristic is
necessary for exploring model spaces. An obvious idea is some kind
of recursive algorithm which either will adaptively refine a very
coarse model, or remove detail from a fine model, such that resolu-
tion is created at the depths statistically justifiable from the data.

We rank models on the basis of the marginal model likelihood
(MML), obtained by integrating the Bayesian posterior density over
the model parameters. For model k the MML is defined as

w(k) = f L(d|my)p(m;)dmy.

The Laplace approximation for the MML (Raftery, 1996), for our
CSEM problem, is

~log(m (k) = 3(d ~ F(m))"C;(d ~ F(m))/o?
+ %nd log(0?) + %(m —m,) (" + W)
X(m—m,) — % log(|ud"a + W,|)

+ 22’2 log(2m) + %(10g|H

), (10)

with all terms evaluated at the MAP point, the Hessian H as per equa-
tion 8, and the smoothing . = 0.

As a reference implementation, we have adopted a recursive
greedy search algorithm based on successive refinement of an initial
very coarse model. The algorithm proceeds as follows:

1)  Compute the MAP solution and MML for a very coarse, suffi-
ciently deep two-layer model (problem of dimension n, = 2).
This becomes the parent model.

2)  Loop over all layers in the parent model, split each layer into
two by turns to make child models, and invert for the MAP
point and MML for each child model (12, models of dimension
n, + 1 each). Record the best solution (favorite child) and best
MML.

3) Ifthe bestchild MMLis an improvement on the parent’s MML,
embed the split, and iterate the process with the best child as the
new parent. If no solution is better, terminate the algorithm on
the n, dimensional parent model.

In each case, default starting points for the optimization are ob-
tained by injecting the parent MAP parameter values into the child
parameter vector in a way that preserves the existing spatial distribu-
tion. Global inversion is very desirable for each candidate model, as
superior solutions might not be in the basin of attraction of the start-
ing point inherited from a parent.

These coarse models should require no spatial smoothing be-
tween layers, so in all the expressions above, d = 0 and the W, will
be calculated from the univariate prior variance.

Example of resolution via model-selection

A standard test problem in the CSEM literature is the canonical
model (Constable, 2006), a 100 m-thick, 100 {dm-reservoir buried
1 km deep in shales under deep water. An example of the evolution
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of these split models for the canonical test model is shown in Figure
2.

Itis clear that the reference algorithm above will arrive at relative-
ly parsimonious models, but it is not clear that it always terminates at
the simplest conceivable model. An alternative, more expensive al-
gorithm based in splitting and merging can achieve the latter; an ex-
ample is shown in Figure 10 later in the paper.

OPTIMIZATION DETAILS

Projected Newton or Marquardt methods with bound
constraints

Experience shows that unconstrained inversion (very wide priors)
often produces unphysically low values of resistivity in the shallow-
er layers. Such values might occur not only at the final optimum, but
during the optimization phase, and might allow the minimization to
wander into an unwanted basin of attraction. Placing a sensible low-
er bound truncation in the prior distribution cures this problem, but
introduces the problem of how to efficiently control the optimization
in the presence of such bounds.

For badly scaled problems such as the CSEM problem we ad-
dress, naive ideas easily can induce slow convergence, so some sub-
tlety and care in implementation is required. We have implemented
the projected Newton technique line-search described by Bertsekas
(1982) and Kelley (1999) and a projected trust-region (Marquardt)
method, adapted from Madsen et al. (2004). The implementation re-
quires some care, so we make this available in Appendix D of Gun-
ning (2010).

When optima occur at parameter boundaries, the Laplace approx-
imation for the marginal model likelihood is certain to be less accu-
rate, as the probability is truncated in at least one parameter. It is dif-
ficult to estimate the correction factors necessary, but the approxi-
mation will give at least an estimate of the order-of-magnitude of the
integral.

Currently, all parameters (logo(p)) share the same bounds. De-
fault bounds of —0.1 < log,o(p) < 4 are applied, the lower corre-
sponding to 0.8 (m, a respectable lower bound for shales based on
Hashin-Shtrikman effective media theory. The bounds can be dis-
abled or altered if desired.

Globalization — multiple start solutions

Virtually all modes of inversion except either very low-dimen-
sional models or excessively oversmoothed finer models will suffer
from multimodality. This is most obvious in dependence on the ini-
tial guesses in the optimization runs and algorithm dependence in the
solutions found (e.g., the details of the line search). Reasonably rich
models with weak smoothing usually have a significant number of
local modes; some might be very poor fits, but several might be re-
spectable.

The best strategy for dealing with this is to use models as parsimo-
nious as the purpose of the study permits and attempt to enumerate
and quantify as many local modes as possible. The code can be in-
voked with a suite of strategies, attempting multiple optimization
passes at each point in the code where (by default) a single local opti-
mization is performed (in addition to the default local-optimization
pass). A variety of strategies is conceivable; we have implemented
the following suite. (1) Default (and mandatory): use a starting point
determined by the startup file. (2) Try N random starts in the hyper-
cube mm; — 1 < m; < my,; + 1, where m is the optima found by strate-
gy (1). (3) Form starting points formed by flipping adjacent layer re-
sistivities in the solution 7, pairwise, at layers where a reasonable
contrast seems likely as judged by successive jumps in 771;. The latter
strategy is designed to (hopefully) lie in different basins of attraction
to the existing /. Some simple thought experiments and numerical
experience show that the MAP solution for underresolved (fine-
gridded) models tend to place all the required high resistivity in a
single layer, so simple multimodality will exist in the precise loca-
tion of that anomalous layer.

At the end of the mode enumeration, the code checks the modes
for duplicates using some naive tests (e.g., Euclidean distance of
MAP points less than some threshold) and sorts the modes by mar-
ginal model likelihood (usually very closely tied to rms misfit). Iter-
ation, response, and model depth-profile files are written for each
mode.

Atypical example of distinct multiple modes is shown in Figure 3.
These have the typical “layer-flipping” behavior mentioned before.
Another useful function of the mode-enumeration facility is to check
that the local modes occur at genuine optima of the -ve log posterior,
not simply at points where the Newton scheme could make no fur-
ther progress caused by coding errors, bad scaling, poor termination
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Figure 2. Canonical model under splitting: dark gray = truth case, light gray = final split model with minimal-log (MML) value, black

= Bayesian smoothing MAP inversion on fine grid for comparison.
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criterion, or other gremlins. Figure 3 shows a plot of the final objec-
tive function from 500 random starts of a typical problem, where the
repeatable convergence to one of seven possible solutions is clearly
evident. In this case, one mode clearly is very superior, and it is reas-
suring to see that it has an ample basin of attraction.

Mode uniqueness checks

An important consideration in any “mode enumeration” strategy
is to avoid the double-counting of modes and understand the relation
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Figure 3. (a) Multiple local-mode MAP solution depth profiles of an
eight-layer unsmoothed problem, shown as distinct curves. (b)
—Log(posterior) of a large ensemble of random starts. Repeated con-
vergence to particular optima is good evidence of sensible termina-
tion criteria.

between modes. We know from simple thought-experiments that
there can be distinct optima which are separated only by weak proba-
bility barriers in the posterior surface, and knowledge of these near-
degeneracies might be useful in constructing MCMC strategies,
among other reasons.

A particularly interesting question is how to construct the “lowest
energy”’ path connecting two modes. This path should look like the
gray geodesiclike path of Figure 4. This object might form a sort of
backbone along which ridges of the posterior probability might
form. One possible way to seek such paths is to minimize the path in-
tegral

B

Agp= f x*(M)at (11)

A

along a smooth parametrized path from MAP point M, (belonging to
mode A) to a distinct mode MAP point M. For x2, we would use the
full Bayes -ve log posterior, equation 5, or at least the varying pieces
of it. Algorithms to generate such paths are described in Appendix A,
with some examples.

In summary, our findings are these: for many problems, we find
the modes can be linked along paths whose probability barriers are
very weak relative to the sampling fluctuations expected in the pos-
terior. For certain near-degenerate cases, the paths correspond to sets
of layers behaving as an effective medium with strictly known up-
scaling laws (e.g., responses depend only on a sum of resistivity-
thickness products), but in general this is not the case. In such cases,
sampling algorithms for the model uncertainty ought to be able to
visit all the modes, and the chief challenge for such algorithms is the
traversal of the twisting, steep-sided ridges of the posterior, not
jumping between isolated modes per se.

APPROACHES TO INVERSION UNCERTAINTY

In Bayesian inversion, we emphasize that the full posterior distri-
bution embodies all we can know about the model, and point esti-
mates (e.g., MAP solutions) are very imperfect as tools for making
decisions. Ideally, parameter inference from CSEM data should take
into account model uncertainty and parameter uncertainty.

Within a model, typical approaches to parameter uncertainty will
involve computing posterior covariance matrices from the inverse of
the Hessian at MAP points. This is very useful, efficient, and usually
satisfactory. But because the nonlinearity in CSEM is severe, the lo-

Mj

Mi

Figure 4. Optimal path connecting modes A and B. The dots depict
nodal points on a discretized approximation to the path, used in the
optimization algorithms detailed in the main text.
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cal linearization is unreliable, and methods based on sampling must
be adopted. Notwithstanding this, our implementation writes out lin-
earized MAP posterior covariances (5 =H""), correlation-coeffi-
cient matrices ({C, il \"ﬁ}), and 1-sigma posterior marginal error
bars (1, = \ 5,,-) for the inverted models, for comparison purposes.
In the hierarchical Bayesian smoothing mode, the “smoothing-free”
approximate covariance (C=(J'CJ/ o> + o, is used be-
cause the smoothing is an artificial construct.

In this section, we confine the discussion to uncertainties within
models, and present two canonical approaches to sampling: 1) Mar-
kov Chain Monte Carlo (MCMC) from the Bayesian point of view,
and 2) the frequentist parametric bootstrap method, adapted for the
Bayesian framework we use. This latter technique has appeared in
the hydrology/petroleum “history-matching” literature under the ru-
bric “randomized maximum likelihood” (Kitanidis, 1995; Oliver et
al., 1996), but we prefer the name “Bayesian parametric bootstrap.”

The MCMC approach is the method of choice for fully Bayesian
frameworks where little can be done analytically, and fast forward
model evaluations are possible. It is the standard tool of choice for
Bayesian statistical work. The validity of the MCMC algorithm rests
critically on constructing a “model proposal”” scheme which can vis-
it all the parameter space efficiently and satisfies the requirements
for reversibility. This is a very stringent requirement and greatly re-
stricts the ability of these samplers to use “optimization-related” in-
formation to construct proposals. For posterior distributions that are
very poorly scaled, distorted in shape, and modestly sharp in some
dimensions, this makes the construction of good schemes very diffi-
cult. Liu (2001) is a good survey of the technique. The section
MCMC below has the details of our implementation for 1D CSEM.

Frequentist statisticians are more used to dealing with uncertainty
estimation using varieties of the bootstrap or jackknife (Efron and
Tibshirani, 1994). These rely on performing separate parameter in-
ferences for each member of a suite of synthetic data sets (generated
from an initial best-fit model using the actual data), so the use of opti-
mization apparatus is used explicitly for each bootstrap sample. This
has certain advantages for the CSEM problem, as the optimization
machinery in place is then able to help find good samples in the do-
main of support of the posterior. Bootstrap theory has foundations
and justifications related to large n (number of data) expansions of
the posterior (Hall, 1992) and can be expected to closely resemble
Bayesian posteriors if the prior has weak influence (i.e., the likeli-
hood swamps it). This latter is only partially true of the CSEM prob-
lem, especially in somewhat over-parametrized models where the
Bayesian prior is essential for stabilizing the posterior.

In the section “Bayesian parametric bootstrap” and Appendix B,
we show that the parametric bootstrap can be used in a Bayesian
framework by treating the prior information as “effective observa-
tions” on the parameters. Clearly the number of “extra” data points
generated in this way does not grow as we acquire more data, and if
the forward model has implicit degeneracies (i.e., near rank-defi-
ciency in the sensitivity), the “large n” assumptions of bootstrap are
not strictly valid. Nonetheless, bootstrap theory has been shown to
be remarkably effective even for few data, as some of the test exam-
ples show, and the ability to straightforwardly apply optimization
techniques helps greatly in visiting a greater spread of parameter
space.

Markov Chain Monte Carlo

The code incorporates a tentative implementation of an MCMC
sampler suitable for sampling from low-dimensional models. It re-
lies heavily on information collected during the optimization and
mode enumeration passes. For convenience, suppose the mode enu-
meration has found a set of local optima i = 1...N,,, which we char-
acterize by their MAP points 77;, local approximate covariance (in-
verse Hessian) C; and estimated relative probability (i) (we add
the subscript N to indicate the 77 (i) are normalized so 2,7,(i) = 1.
These are sorted by 7 y(i), so mode 1 is estimated to be most likely.
The algorithm below is robust to the enumeration missing a mode as
long as it is reasonably accessible by the random-walk proposals.

A Markov chain is a sequence of samples m; whose overall equi-
librium distribution approaches that of the Bayesian posterior
I1(m|y). All that is required is a proposal kernel g(m’ | m) for visiting
anew state m’ from an existing state ., which potentially can visit
the entire support of the distribution (irreducibility), and a probabili-
ty for accepting or rejecting a proposal. The art in MCMC imple-
mentation consists in constructing proposal schemes that rapidly
move across the support of the posterior.

In fixed dimensions, the well-known Metropolis scheme uses an
acceptance probability

Y ( H(m'|y>q<m|m'>>
" T(mly)g(m'|m) )°

where I1(m'|y) is the posterior density of model m, given data y, up
to a fixed normalization constant. Models outside the bound con-
straints are assigned an extremely low probability.

At present, the sampler is implemented for known noise o, and
zero smoothing, so we use equation 2 with C,, a diagonal matrix pop-
ulated from the user-specified prior variances.

The proposal kernel ¢ is a random mixture of three types of pro-
posal:

1) Random jumps of form g(m'|m) ~N(m,£C,), where C is the
linearized posterior covariance (inverse Hessian) of the most
likely mode, and € is a scaling parameter tuned such that the fi-
nal acceptance rate from this kernel is about 0.25.

2) “Layer-flip” moves seeking to exploit the possibility of nearly
constant resistivity-thickness product between adjacent layers.
The scheme below is a random jump in m; followed by a condi-
tional random jump in m; |, designed so as to nearly conserve
this property between layers j and j + 1. Layers have thickness
T;, subsea depth d;. Atinitialization, a set of candidate layers S ¢
suitable for possible layer flipping is assembled. Currently, ad-
jacent layers with T; < d;/4 form this set. If a layer-flip is cho-
sen, the algorithm is:

Choose j € S, at random. All parameters but m;,m; ., will re-
main the same. Initialize J,; = o°.

Propose m] = m; + 8m;, where Sm;~ N(0,13).

If m/=m,;, compute &=(T;10"+ T;, 10"+ —T;10")/
T

If (¢ > 0), propose mj,, =log,o(§) + dm;.,, where dm;.
~N(0,2) and compute R = (T;10" + T;, 10"+ — T;10m)/
Tiiy. If R >0, compute J,; = (8m7, | — ((log;o(R) — m;,,)/
1)) ,

Accept the proposal with probability min@l,%e’ﬂg. The
jump sizes f4,f are tunable parameters, typically f,=0.4, f
~(0.02.
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3) “Mode jumps” from mode i into mode j of form
m, =m+ l/hJ - I’ﬁi.

This proposal is made with probability (), so g(m’|m)
= mp(j), and the Metropolis equation requires the piece
qg(m|m")/q(m’|m) = my(i)/ wx(j). This kernel is designed on
the assumption that the random-walk part of the sampler will
stay close to the mode MAP point relative to the separation be-
tween modes, that modes will have a similar shape (local cova-
riance), and that no tunneling between modes will occur (so the
“targeted” offset ri1; — rit; is useful). The mode weights ()
are used in the proposal so little time is spent constructing a
jump to a mode that is very likely to be rejected. None of the as-
sumptions just outlined is a very safe bet for the CSEM prob-
lem, unfortunately.

Although Chen et al. (2007) express enthusiasm for the slice sam-
pler of Neal (2003), our impression is that the component-wise slice
sampler has significant difficulties with highly correlated posteriors
(as would any component-wise method), and it is not clear to us how
to implement efficiently a multicomponent version for this problem.
Some experiments with hybrid molecular-dynamics samplers (see
Chapter 9, Liu (2001)) have produced indifferent results. The funda-
mental difficulty is that, for many problems, the posterior is very
badly scaled (narrow in shallow parameters, wide in deep ones) and
highly nonlinear for degenerate parameters: “steep-sided curving
valley(s)” in parameter space. The scaled random-walk proposal
works well for modestly poorly scaled problems, but only those that
do not twist or snake. The fundamental difficulty is very strong, but
twisting parameter correlations, and virtually all MCMC techniques
we know of, have difficulties in this regime.

Bayesian parametric bootstrap (or Monte Carlo)

An alternative method for assessing inversion uncertainty is an
older technique called Monte Carlo simulation, referred to in more
modern literature as the parametric bootstrap. For overdetermined,
stable inverse problems without any kind of Bayesian prior, the usu-
al procedure is to estimate a maximum-likelihood model /: by, say,
nonlinear regression (i.e., minimize X2 = (v — f(m))"C; ' ((y
— f(m))), estimate the parameters of the noise distribution of €
= (y — f(m)) (e.g., a noise variance), then simulate an ensemble of
bootstrapped “synthetic” data sets y; = f(71) + €,, with €; new sam-
ples from the noise distribution. A matching ensemble of boot-
strapped parameter estimates 771; then are formed by nonlinear re-
gressions of each resampled data set, i.e., minimizing X7, = (Vi
— flm))"C; '((y; — f(m))). The statistics of the ensemble 7; then
are used for interval estimates, etc.

Gunningetal.

Appendix B reviews the known result from linear theory thatif the
noise model is correct and the noise variance unbiased, the mean
bootstrap model is an unbiased estimator of the mean (in fact the or-
dinary least-squares estimate), and the ensemble average residual
sum of squares (RSS) is x;_, distributed and has mean n — p. This
result is what motivates suitable “target misfit” values in discrepan-
cy principle approaches. Another important result is that the distri-
bution of the RSS of the bootstrap residuals with respect to the origi-
nal data setis X,z,, but offset to the right by the regression misfitn — p.
This suggests the range of data misfits that should be encountered in
the posterior distribution.

In Bayesian frameworks, the objective function (log-posterior)
above typically is augmented with terms from the prior, usually to
something like

x> = (y = fm)"C; ' (y — f(m))
+(m—-m,)"'C, '(m—m,).

We show in Appendix B that the usual parametric bootstrap ar-
rangement can be modified to work for this case, by treating the prior
as additional “data.” The upshot is that bootstrap model samples then
are found by an optimization problem with resampled synthetic data
and resampled prior means m,,. The distributional statement above
also holds, with the number of data n now taken as n + p. In short, a
Bayes MAP model i is found using the real data y, and bootstrap
samples are found by optimization with synthetic data drawn from
yi~N(f(im),C,), and a synthetic prior fromm,,;~ N(s11,C,).

From the material and example shown in Appendix B, it emerges
that the recentering of the prior mean, which is required in the fully
linear case to achieve rigorous, unbiased sampling, has a strong ef-
fect in the nonlinear and multimodal case, effectively oversampling
the posterior in the region close to the MAP estimate 7. To overcome
this effect, at the price of some weak bias, we advocate a non-recen-
tered version, using the same recipe as above, but drawing bootstrap
prior means from m,;~N(m,C,). The example below illustrates
how this helps for a CSEM problem with well-understood ambigu-
ities.

Example: CSEM split-canonical model
of underresolved layers

Here we examine parameter uncertainties using a test case we like
to call the “split” canonical model: a 1 km overburden shale (m,),
then two 50-m reservoir layers (m,), ms), and shale underburden
(my). “Truth-case” data are synthetically generated with the shale
background 1 Qm (m; = my = 0) and the reservoirs 100 Qm (m,
= ms = 2). Because the reservoirs are thin relative to natural resolu-
tion, we expect the CSEM data to resolve only the total resistivity of
the two reservoir layers, but there might be subtle depths preferenc-
es.

Samples drawn using the recentered bootstrap
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are shown in Figure 5. The spread of models is
fairly wide, but there does appear to be a concen-
tration of the anomaly in the deeper layer, param-
eter m3. This requires a little explanation. First, in
the Monte Carlo experiment where we generate
synthetic data from the standard three-layer ca-
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Figure 5. (a) Joint samples of m,,m; from recentered parametric bootstrap on the split-
reservoir canonical model. (b) Histogram of m; from the samples, and (c) histogram of

m,, from the samples. For discussion on asymmetry, see main text.

0 L
-0.50.00.51.01.52.02.53.0

nonical model with Gaussian noise, and invert for
Mo bootstrap MAP split-canonical (four-layer) mod-
els using globalized mode-searching, about 75%
of the time the “most-likely mode” places all the
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anomaly in the deeper thin layer,5 so the layers obviously are thick
enough to break the symmetry modestly. Second, the particular data
used for the truth case produced a MAP solution 171 = (0.9,2.3), so the
recentered bootstrap samples consequently are more concentrated in
this region. The weak preference for the deep layer in the Monte Car-
lo experiment is of no great significance, but once the recentered
bootstrap has been fired off with a MAP solution in a particular part
of parameter space, bootstrap realizations clearly will be more
sharply concentrated in that region than is desirable.

The non-recentered bootstrap output is shown in Figure 6. Here
there is a much better symmetry in where the anomaly is placed, but
smoother models m,= mj; are under-represented. This under-repre-
sentation is caused by the modestly low probability of drawing mod-
els from the prior distribution close to this “knee” point in the maxi-
mum-likelihood surface because the MAP solution found by the
bootstrap will be, roughly speaking, the closest point on the maxi-
mum-likelihood surface to the sample prior-mean for the realization.
Figure 7 shows the comparable output using MCMC (with heavily
decimated sampling output), showing heavier support in the corners
of the distribution and for smoother models.

For strongly nonlinear models, empirical distributions produced
by bootstrapping cannot be expected to yield the same results as pro-
cedures that correctly sample from the Bayesian posterior, such as
MCMC. The theory is strong for the linear case, but the validity of
the bootstrap procedure depends on being in an asymptotic regime
with a large data-to-parameters ratio and a very focused (compact)
likelihood, which means the linear approximation is respectably val-
id over the support of the posterior. The first example above repre-
sents a case where acquiring more data will not focus the posterior
better; the model is intrinsically unresolvable,

F161

chosen specifically to illustrate resolution aspects. The underburden
is also shale. The shale background is 1 m, reservoir 100 Qm, and
the data set is inline |E| measurements at frequencies f
=.25,.5,.75,1,1.25,1.5,2 Hz, for offsets at 1 km to 15 km, on 500
-m spacings. Noise levels are taken as 5%, with a noise floor of
2.10710 V/Am?.

Figure 8b and ¢ show MAP inversion images produced using
Bayesian smoothing on two grids: a regular 50-m grid, and a loga-
rithmic grid (layer thicknesses increasing geometrically with depth).
Both styles fit the data satisfactorily, so the inferred image largely is
afunction of the grid construction. Figure 8d is a plot of the MAP in-
verted reservoir thickness and resistivity-thickness product (RTP),
with error bars, based on a parametric study of a three-layer model,
as follows. For low-dimensional models, the marginal model likeli-
hood (MML) is a useful tool for examining model uncertainty in-
volving depth and thickness of certain target layers. The code can be
used to generate a model-study suite of inversions over a user-speci-
fied range of specified layer thicknesses in an arbitrary hypercube.
The MAP model belonging to the maximum MML model chosen
from this suite of models is what we describe as a “MML-based in-
version.” The MML outputs from this model study are used to con-
struct thickness and depth uncertainties for target layers. Discrete
summations of the model probabilities (~ e ~MML) over thicknesses/
parameters not of interest are used to construct approximate margin-
al distributions for parameters of interest. Figure 8d is such an inver-
sion result for the wedge model, using a parametric model study of
the reservoir layer top-depth and thickness.

Figure 9 shows how the MML varies as the depth and thickness of
a single-layer reservoir vary at location CMP 5, where the truth-case

and only the uncertainty of the “effective medi- )25

um” formed by m, and m, is reduced with more 20l
data.

Our recommendation at present is that the o 157

£ 1.0

“nonrecentered” bootstrap be used, as it seems
less likely to miss significant probability mass 051
away from the mode belonging to the MAP solu- 0.0r

0 e,

b)100 €)100
80 ] 80
1] € eor £ 60
i1 3 3
{ O 401 O 4o
2
1 207 1 207
_r”m_h‘ o p,nf|_|—‘_|ﬁﬂﬂH

tion 7 used as the basis for the bootstrap. Be-
cause, in the CSEM case at present, the prior
means nearly always are less than the MAP val-
ues, any biases are likely to reduce inferred resis-
tivity values, which is a conservative tendency.

It is fairly likely that adapted bootstrap tech-
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Figure 6. (a) Joint samples of m,,m; from non-recentered parametric bootstrap on the
split-reservoir canonical model. (b) Histogram of m; from the samples, and (c) histogram
of m,, from the samples. For discussion on under-represented smooth models (n, = mj;),

. . . L see main text.
niques exist for multimodal target distributions,
and that a good resampling scheme for multivari-
ate Gaussian mixtures can be constructed. This )25 - ‘ b)100 €) 100
ires furth h i -
requires further research. 2ol “ ol 8ol
Y
EXAMPLE PROBLEMS o o 4 € 60r € 60r
£ 2 o
. o O 40} O 40}
Thickness wedge model 1o § “0 40
L i L L
Here we invert a known truth-case model, con- 05 20 2
structed as a resistive wedge buried 1 km deep in o

shale, in 1 km of seawater, and extending from
10 to 450 m in thickness; see Figure 8a. The
wedge is presumed to be very gradual, so the 1D

assumption is not violated; the wedge geometry is ples.
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Figure 7. (a) Joint samples of m,,m; from MCMC sampling on the split-reservoir canoni-
cal model. (b) Histograms of m; from the samples, and (c) histogram of n1,, from the sam-

>The bootstrap modes are very well-separated, focused clusters at (n1,,m3) = (0.4,2.5) and (2.5, 0.4), so we can expect that, for any data set, the MAP model 771 is

near either of these values.
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model was 135 m thick (1000 m deep). Thicker models have a slight
tendency to image shallower. Though we do not show the details in
the interests of brevity, under the Monte Carlo experiment of resam-
pling the synthetic data and reconstructing the marginals each time
via the parametric model study, the MAP estimate of depth and
thickness can be shown to have low bias.
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Bird model

This case is a surrogate for some field data, with subsurface target
profiles approximating that of interest, and field data generated syn-
thetically by adding independent Gaussian deviates to the truth-case
data. The data sampling inherits some uneven spacing from the CMP
processing on actual field data and the somewhat arbitrary extension
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Figure 8. (a) Truth-case wedge model: 100 Qm reservoir over I Qm shale background. (b) MAP inversion image using Bayesian smoothing on
aregular 50-m grid. (c) MAPinversion image using Bayesian smoothing on a logarithmic grid. (d) MML-based three-layer inversions for depth,
thickness and resistivity, showing marginal-distribution 95% error-bars for thickness, and resistivity-thickness product (RTP). Clearly the RTP

is much better identified by the data than thicknesses or resistivities.
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of the 0.75 Hz and data near the noise floor. Here the error bars are on the achievable resolution, and detect the two main anomalous (re-
5% of |E|, thresholded at 2.10~'® V/Am?2. There are frequencies sistive) layers aside from basement. Some variation in the thickness
0.25,0.75, and 1.25 Hz, and the data is | E£] inline, from 1.2—12 km. of the final “GAP” lower-resistivity segment is observed (see Figure
The “true” model, data, and two styles of inversion are shown in Fig- 10), but parametric variation of this thickness shows that it is very
ure 10. Inversions have been run with Bayesian-smoothing and poorly resolved by the data (the MML shows support over about
Bayesian model-selection styles, and both have similar “opinions” 1 km of thickness).
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Figure 9. (a) Contour plot of marginal model likelihood of three-layer model fit to CMP5 data in wedge model, as a function of reservoir depth
and thickness. Contours are at unit spacings of log;o(MML), so three contours is about the conceivable span of model support in the data. Views
(b) and (c) are the marginal distributions of thickness and depth of the reservoir layer associated with the MML measure, shown with the original
truth-case model values from which the data were generated, and also MAP estimates of parameters. Note that no conclusions about bias could
be drawn from these plots, as the marginal distributions have considerable stochastic uncertainty under resampling of the data.
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Figure 10. Bird model. (a) Three-frequency inline | E| data used for inversion, with typical fitted model (Bayes-smoothing case). (b) Truth-case
data (thick gray), and MAP inversions for three styles of “resolution-detecting” inversion (Bayesian-smoothing, splitting and split/merge). All
three approaches fit the data at approximately y ays = 0.9.
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To examine inversion uncertainty, an unsmoothed inversion
based on a p = 18 layer logarithmic grid was run, with model priors
setat N(0,1), and noise-variance o, an additional unknown. This in-
version has modest uncertainty about which layer to place the two
anomalies in, and the marginal posterior distributions in the anoma-
lous layers clearly are multimodal. A typical example is shown in
Figure 11.

This model is an interesting comparative test case for the posterior
sampling techniques. We generate large bootstrap and MCMC en-
sembles and compute from these samples the P16, P50 and P84
quantiles (mean =+ one std deviation for Gaussian deviates) of each
layer parameter m;. These quantiles and the truth-case model for
both styles of calculation are shown in Figure 12. Neither method
seems statistically anomalous in terms of mispredicting the actual
model, but in general the bootstrapping interval estimates are a little

wider, as suspected from the simple calculation for the split canoni-
cal model. Either method is very much preferable to linearized error
analysis (using local mode Hessians); these are not shown. The
MCMC calculation is at least 10 times the expense of the bootstrap-
ping run in this case, as slow mixing is a controlling factor. The cor-
relation test procedures of Raftery and Lewis (1996) have been used
to estimate the adequacy of the final ensemble. The tendency of
bootstrapping to undersample the smoother models makes certain
bimodal distributions more accentuated, and hence some of the P50
quantiles are more volatile.

Another test of the sanity of the sampling procedures is statistical
plots of the sample-log (posterior) distribution, relative to what
might be expected from linear theory. From equation B-7, Appendix
B, we expect the sampling distribution to “resemble” an offset Xf?
distribution if the model were nearly linear. For the nonlinear case all

Figure 11. Bird model unsmoothed inversion un- 3.5 M4 VErSUs Mis 1000
certainty. Cross-scatterplots of bootstrap sample 3.0 1500
models in layers 13, 14, 15, and 16, where the deep- 25 =
er anomaly lies. Inset: Grayscale model depictions 20 & 2000
of the model parameters in depth, for 100 “realiza- 15 13 2500
tions” from the posterior using bootstrapping. In 10 14 >
these samples, the anomaly prefers to reside solely 05 15 mp 3000
in one of r three layer: ra “background.” ’
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Figure 13. Bird model, posterior distribution of the -log(posterior)
distribution (total prior and data misfit). Difference from the theoret-
ical linear curve is a result of the nonlinearity, but MCMC and para-
metric bootstrapping generate comparable results.

bets are off, but we should expect a modest concurrence, and in par-
ticular we should expect an alternative scheme to MCMC to agree
closely on this issue. See Figure 13.

One can conclude from this exercise that both sampling methods
are good at generating plausible models (i.e., all fit the data within
the “expected” variation), but the bootstrap models are more widely
variable, i.e., tend to concentrate an undue fraction of the resistive
anomaly in single layers. The bootstrap technique is very good at
generating independent samples; even given the price of optimiza-
tion for each sample, the overall optimization cost (say O(100) for-
ward runs with sensitivity) still is less than the cost of progressing to
a decorrelated state in the MCMC chain. However, the bootstrap
does not visit the more remote portions of the posterior as well as
MCMC and is overall amildly biased sampler for this seriously non-
linear problem.

SOFTWARE

The open-source DeliveryCSEM code implementing these ideas
is a companion software to the Delivery software used for seismic
AVO inversion (Gunning and Glinsky, 2004). It is released under a
General Public License-style license into the public domain and can
be obtained at the Commonwealth Scientific and Research Organi-
zation (CSIRO) web site (Gunning, 2003). The bulk of the code is
Java, but uses the public domain Scripps forward engines in FOR-
TRAN (DipolelD (Key, 2009), also seafloor.f and dependencies
(Constable et al., 1987)) called through the Java Native Interface.
Test examples and usage documents, etc., are at the web site.

CONCLUSIONS

We have presented two Bayesian approaches to resolution infer-
ence and uncertainty in CSEM inversion problems. Resolution can
be inferred by either hierarchical models with free parameters for
correlation lengths (Bayesian smoothing), or model-choice frame-
works applied to variable resolution spatial models (Bayesian split-
ting/merging). Globalized optimization with bound constraints is an

essential workhorse for either method. The smoothing methods tend
to be faster, but the final models are not as parsimonious. Both meth-
ods offer a coherent alternative to regularization approaches, with
more explicit control of the prior distribution, and a more intimate
relationship to the large statistical literature on model inference us-
ing maximum likelihood or empirical Bayes methods.

Local linearization approaches to model uncertainty based on co-
variance matrices at modes are of very limited use and usually
chronically underestimate uncertainty for models with multimodal
or heavily skewed posterior marginal distributions. A reasonably ef-
ficient technique based on a Bayesianized version of the parametric
bootstrap is much better, but likely to modestly overestimate uncer-
tainties. Full MCMC sampling is possible for these problems but
very expensive compared to either of the preceding techniques.

Software for performing these inversions is made available under
an open-source license agreement, with reference implementations
of all the main ideas described in this paper.
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APPENDIX A

ALGORITHMS FOR FINDING MODE
CONNECTIONS

One possible approach to finding a locally minimum path for the
integral (equation 11) is by discretizing the integral using some
quadrature scheme. In the following examples, neither free-noise
nor smoothing is used, so it is sufficient to use the objective (with C,
diagonal)

—2log(Il(md)) = x> = (d — F(m))"C, '(d — F(m))

TH—1
+(m-m,)’'C, (m—m,).

Avery simple “midpoint” Euler scheme for equation 11 is

i=N+1 o D)
M, + x“(M;
AABZ E X( 1) 2X( z+])
i=0

where My = My, My, | = My, and M|, M,,...,My are path “nodes”
fairly evenly distributed along the path connecting A and B. We then
minimize the sum for the joint parameters M = {M,M,,...,My}
using standard optimization techniques. Start with an initial configu-
ration of points M; evenly distributed along the straight line connect-
ing A and B. Efficient optimization will require, at least, V , A 5. Be-
cause the gradient VM,X2 at the ith path-node already is coded and
available, the bulk of the work is done. For completeness, the full
joint gradient, in components, is

N N+1

> {Vi(Mi)}j(AMi +AM_ )+ 2 (M)
i=1 i=1

N
Ml”_Ml‘— i
+ Xz(Mi))—W - 2 (M, )
i—1 i=0

||Mi+1 - M[

. (A

(VAAB)ij =
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M., — M.
+ xA(My) =R (A-2)

AM,

Here, AM; = |M;, ; — M| is the forward-difference path-segment
length. With function and gradient now readily computable, the opti-
mization now can proceed using standard efficient methods. At
present, we use a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
(variable metric) scheme (Nocedal and Wright, 1999), based on un-
constrained minimization (UNCMIN) (Schnabel et al., 1982; Ver-
rill, 2005). A simple example with known degeneracy is shown in
Figure A-1. It is helpful to introduce apparatus to ensure the node
points in the discrete approximation to the path-integral remain eq-
uispaced. We define the segment lengths AM; = |[M,,, — M|, the
mean segment length

Lo
mg = IE”AMi
i=0

>

N+
and the additional penalty term to A,y

N
AiB =AY (M., — M| — i),
i=0

whose gradient has components

(VA :2~A((Mij_Mi+l,j)(1 _”_ls/AMi)

*
AB) ij

—(M;_y;— M, )(1 —img/AM;_)).

-1

A is chosen as a suitable scaling constant (e.g., A= (N
+ 1)2/|[M, — Mg|?). Local minimization of A,g -+ AZB then will
generate the maximum probability local path, with equispaced
points. Note that because A}, penalizes only the “segment-length
variance,” it should not compete with the principal term we wish to
minimize.

It is possible to formulate the problem using Euler-Lagrange
equations for the minimum path, which could be solved by, e.g.,
shooting. Experiments with the BFGS implementation scheme
above indicate that the number of outer iterations required to stabi-
lize (around 50) is likely to be comparable to the number of forward
shoots likely to be needed in any Newton-like shooting scheme. A
Runge-Kutta or similar scheme for the latter is likely to require about
the same amount of work (e.g., a function and a gradient evaluated
about every g in space), so overall, the computational costs of the
two ideas are probable comparable.

MORE COMPLEX EXAMPLE

Here we consider an 18-layer logarithmic-gridded model with n
= 138 data for inline |E|. The code is run in naive style, with no
metasmoothing or noise parameters, so M = m. Multistart optimi-
zation is enabled, using layer-flipping, and the code ends up collect-
ing eight modes. Figure A-2 shows a scatterplot of the path linking
modes 1 and 3, for layers 4, 5, 6, 12, 13, 14. The inset “morph” figure
shows how the model evolves from model 1 into model 3 along the
path. The layers chosen for the scatterplot are those undergoing sig-
nificant changes.

A question of great importance is whether the modes are “statisti-
cally interconnected” at the level of noise specified by the inversion.
A rough guess at this can be inferred by assigning the most likely
mode MAP point as the offset in an offset Xﬁ distribution (see the re-
gression discussion in Appendix B, and equation B-7). Random
samples from the posterior should spread out with y? values no high-
er than the support of the offset x; distribution. If this latter comfort-
ably covers the probability barriers separating modes, then we might
say the modes are “statistically connectable.” The modes found in
this example easily satisfy this condition, as shown in Figure A-3.

It is important to point out that these “connecting links” are not
trivial entities in general. They do not arise in the general case from
straight-line interpolation of mode points in either (transformed)
log(p) space or the untransformed space of resistivities. Such
straight-line trajectories usually encounter enormous probability
barriers caused by serious data misfits.

APPENDIX B

CLASSICAL REGRESSION RESULTS,
BOOTSTRAP, AND BAYESIANIZED BOOTSTRAP

Here we wish to motivate the Bayesian parametric bootstrap by
revisiting some known results from classical linear regression and
bootstrap theory.

Suppose that, in truth, the n data are generated by a linear model
in p parameters

v, =X, m+ e,
where X, is n X p, the noise €,~ N(0,C,), and usually C,is a diago-

nal matrix of noise variances. The suffix u denotes “unscaled” vari-
ables. The least-squares estimate of m is

a)os b) 7000 Figure A-1. Evolution of “mode-linking” path un-
der optimization, for the simple experiment of the

6000 g “split-canonical model,” where the 100-m resistive

o0l ] layer (buried 1 km deep) of the canonical model is
5000 1 replaced by two 50-m layers (parameters m,,n;).

Two modes can be found by the “layer-flipping”

s 1 & 1000 1 strategy of the global optimizer, corresponding
E = 3000 ] (roughly) to placing the resistive anomaly in each
thin layer solely. (a) The log,o(p) parameters of

1ol 1 2000 J each are plotted as the path evolves. The optimal

' path is close to that describing a conserved resistiv-
1000 1 ity times thickness sum over the two layers. (b) x>

/ ] \ cross-sections of the posterior surface as the opti-

035 10 15 2.0 25 % 5 10 15 20 25 30 35 mal path evolves. Clearly the early paths are ex-

m, (i = node index along path)

tremely improbable ways to connect models.
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= (X,Cq 'X,) T 'X,Cq 'y
from which the “predicted” data are
Fu =X, =X,(XIC; 'X,) " XIC) y,.

For the algebra that follows, it is most simple to think in terms of
scaled data y=C, '?y,, a scaled design matrix X=C, "?X,, and
standard normal noise € =C "*€,~ N(0,]), in terms of which the
formulas read

m=X"X)"'xTy,

7 =X(XTX) " XTy.

Here, the overall coefficient matrix Q = X(X’X) ~'X”is known as
a “hat” matrix (it “puts the hat” on y). Q has some important proper-
ties. It is symmetric and idempotent because Q* = Q, so has eigen-
values 1 or 0, and has the same rank as X, i.e., possessing p eigenval-
ues 1, the remainder 0. It therefore follows that
rank(/ — Q) = n — p, which is of use in the below. Another standard
result we need is that if z~ N(0,7), and A is a fixed symmetric idem-
potent matrix of rank k, then z’Az is distributed as y7, which has
mean k.

We are interested in the normalized residuals

e=C; "y, —F)=y—-9=U—-Q)y. (B-1)

These have expectation (e) = 0 if the model is true (because (/
— Q) X =0). Another important quantity is the residual-sum-of
squares Yass = e’e, with expectation

(Xrss) = (e'e) = (1= Q)1 = Q)y)
=('l-Q)e)=n—p (B-2)
after a few lines of algebra. Clearly, Y i is distributed as x? with n

100

velope of expected sampling distribution for %Xi) 1

90

—Log(Posterior)
[02)
o

-Log(Posterior) plotted along linking paths between
all pairs of modes 7

~
o
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Node index (i = 0...31)

Figure A-3. Plots of the -ve log-posterior (omitting constant terms)
along the 8 X 7/2 = 28 possible links among eight different modes,
along the minimum integral path. On the left is a profile of the associ-
ated approximate offset — X,2, sampling distribution attached to the
most likely mode. All these interconnecting paths appear reasonably
accessible to the sampler. Note that an =20% correction to the noise
level has been used to adjust the vertical scale.

— p degrees of freedom. It follows, in connection with the “discrep-
ancy” principle used in the Occam style inversions, that if the noise
estimates are correct and Gaussian, the “target value” of yays
= ele/n ought to be

I
Xams = V(n — p)/n, (B-3)

which might be, typically, about 0.9. See also the discussions in
Hansen (1998). Roughly, this means we expect the regression to fit
withinn — p “standard predictive errors.” (Hansen has also a discus-
sion of how setting y&ys— 0 = 1 tends to produce oversmoothing.)
In the thought-experiment of making a very rich model with p —n,
we get xans — 0, which is a standard symptom of complete overfit-
ting.

BOOTSTRAP

A synthetic bootstrap data set for the linear problem then can be
sampled as

A

Yui = Xl + €,
or equivalently
yv; = Xm + €;.
The LS bootstrap model /72, estimated from this sample then is
;= (XTX) " 'XTy, = m + (X'X) "~ 'Xe,,

which obviously is unbiased ({7;). = ). The predictive accuracy
of this sample model with respect to the original data set is of inter-
est. Consider the predictive residuals

e;=y—Xm;=(— Q)y+ Qe,. (B-4)

There are two kinds of ensemble distributions of interest:

1)  The distribution of e; formed by sampling over the data set y
and the bootstrap variables €,, which will denote with y,e sub-
scripts. Because these are distinct spaces, it then is trivial to
show that (e;), . = 0 and that the bootstrap prediction residual
sum of squares ele,~ x2i.e.,(ele), . = n.

2) The distribution of Ee,T e; formed over the bootstrap samples
only, i.e., foragiven, fixed y. This is what is handled in practice,
and identical to the negative log-posterior term in a MCMC ap-
proach. We use the eigendecomposition Q = V'I,V, where V is
orthogonal, /, is a diagonal matrix of p leading ones, and so

e;=(I—Q)y+ Qe =V(U—1,)Vy+1,Ve)
=VI((I=1,)Vy + 1,€]). (B-5)

where €/ = Ve;alsois N(0,I) (i.e., standard normal). Thus

P
ef ;== 1)Vy+ Lellh =0 =)V, + Z e,

»
=y =X, + 2 €, (B-6)
i

or
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e -ei=lly = Xurilh~ x;. (B-7)
€

i.e., the sampling distribution of the data misfit ] . e; is x;, but
offset to the right by the minimum misfit found in the regres-
sion. Roughly speaking, we then expect the bootstrap “sam-
ples” of the model to generate an original-data misfit distribu-
tion y? whose mean is offset by p to the right of the “best fit” x>
in the regression.

In classical and empirical Bayes methods, the noise level (if un-
certain, as is usually the case) would be estimated such that ||y
— X.1|, = n — p, so the mean of the data misfit e’.e; under both
kinds of ensemble averages is n.

BOOTSTRAP FOR BAYESIAN FRAMEWORKS

For ill-conditioned problems with regularization modifications,
or in Bayesian frameworks, the data-misfit objective function (log-
posterior) above is modified with terms containing “prior” beliefs
about the model mean 7. Typically, for a nonhierarchical model,
with a Gaussian prior m~ N(m,C,), and Gaussian likelihood, we
have

X2 = (= fm)'C; (v = fm))) + (m = m)C, ' (m — ).
(B-8)

The extra term can be interpreted as “extra” data points (e.g., section
8.9 of Gelman et al. (1995)) as follows. Form a new data vector Y
= {y,m}, with observational model F = {f(m),m} and augmented
noise covariance

Cd = .
0 C,

The log—posterior then can be written as
2 _(y_ To—ly —
x° = =F(m)'C; (Y = F(m)),

and the local linearization of the forward model F at any point will
produce a Jacobian that looks like

)

Thus we can use the known results from the previous section for
maximum likelihood theory, with a total of n + p data points, and an
augmented-data vector to consider for the residuals.

The upshot is that the “prior mean” used in each bootstrap optimi-
zation must be a sample from the prior distribution, centered on the
MAP estimate using the real data, just as the real data are resampled
with errors N(0,C,) and centered on the MAP estimate f(r11). For ex-
ample, suppose a MAP estimate minimizing equation B-8
is 1. A bootstrap sample then will be Y, ={f(i) + €;,m;}, with €;
~N(0,C,), m;~N(m,C,). For the linear case F(m)= X,m, the
proofs are trivial:

m=X"C;'x+C, ) \(X'c;ly+ ¢, i) (B-9)

Y, ={y,m}={X.m+ €,m;} samples (B-10)

= (X'cr'x + ¢, HxTes Yy,
+C, '7,) MAP estimates
iy = (X"Cy'x + ;)N XTCy Xom + €, i)
=1 (B-11)

Cov(i;) = (i, — 1) iy — 1) ™)

=x'c;'x+¢c, N (B-12)

The implications of this framework for the residual sum-of-
squares now can be trivially inferred taking into account that there
aren + p “data” points and p parameters. Specifically, for the best-fit
(MAP) model, we expect

Xaaa prior = (v = fm)TC; ' ((y = f(m))) + (m
—m)C, (m—m)=(n+p)—p=n,
and for bootstrap samples,

Xaata s prior = 0 — fm)TC; (v = fm))) + (m
—m)C, m =) ~ X7 e

In summary, the implied suggested recipe for the nonlinear CSEM
problem, which we call the recentered Bayesian bootstrap, is (1) in-
vert with the true data and actual prior N(71,C,) to get the MAP mod-
el 1, (2) resample with Gaussian noise of correct variance added to
the synthetic data produced by the MAP model 7, and use a Baye-
sian prior sampled from the centered Gaussian N(s,C,) when in-
verting for the bootstrap samples.

We will see below that recentering the mean of the prior has strong
implications for multimodal models. At the risk of incurring some
bias, we also will use the nonrecentered Bayesian bootstrap, which is
the same recipe above except that the prior samples are drawn from
the original mean N(/,C,). The reasons this more defensive strategy
is useful will become clear in the simple examples below.

SIMPLE EXAMPLES

1) Analytical toy substitute for underresolved layers

Consider the nonlinear “degenerate sum-resistivity”” two-parame-
ter problem with n = 1 data point y, and predictive model y = 10™
+ 10™, measurement error € ~N(0,02), and Gaussian prior m
~N(0,0)H(m,)H(m,). (H(x) is the Heaviside function, H(x) =1, x
=0, 0 otherwise.) The model thus is confined to positive m;.

The Bayesian posterior is of form

aw(my,myly) ~ exp(— (10™ + 10" — y)?/20?)
Xexp(— (m% + m%)/Z)H(ml)H(mz).

For example, with y = 20, o = 1.0, the posterior is focused on an
arc, and Figure B-1 shows both samples and an empirical marginal
probability density function (PDF) of m; obtained using quadra-
tures. For comparison, the marginal distribution obtained using the
non-recentered parametric bootstrapping algorithm suggested
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Figure B-1. (a) Joint samples of m,m, rigorously
from MCMC. Inset (b) shows the exact marginal of
m, from numerical integration, and (c) the approxi-
mate marginal of m; from non-recentered paramet-
ric bootstrapping. (d) Samples generated by the
non-recentered bootstrap, and (e) samples from the
recentered bootstrap, where the MAP model on the
original “data” is at about (0.08, 1.27). The recen-
tered bootstrap models are the suite of points on the
maximum likelihood surface (y; = 10”1+ 10™)
nearest to independent draws from the recentered
prior N((0.08,1.27),1), and clearly such an ensem-
ble undersamples the region with large m; values
compared to MCMC.
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above is shown. Specifically, the Ilatter is: sample 7m;
~N(0,1)H(m,)H(m,) and error €;~N(0,0?), then estimate boot-
strap samples m; ;,m; , by numerically minimizing

X7 = 10"+ 10™ — (y + €))*202 + [(m; — im; )* + (m,

- Vﬁi’z)z]/z, ml,mZZO.

Notice how the marginal distribution is distorted subtly, but is in
general a reasonable approximation, especially because n = 1 and
bootstrapping has origins as an asymptotic technique for large n (but
remember that adding more data does not cure model-degeneracy
stemming from the physics). The most obvious effect is the lower in-
cidence of “smooth” solutions m1;,m, =~ 1 compared to the true poste-
rior: Speculatively, this might widen interval estimates when we ap-
ply parametric bootstrapping to underresolved CSEM models. In
this case, the recentered bootstrap will grossly underrepresent the
frequency of large m, values.
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