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ABSTRACT

Resolution and uncertainty in controlled-source electro-
magnetic �CSEM� inversion is most naturally approached us-
ing a Bayesian framework. Resolution can be inferred by hi-
erarchical models with free parameters for effective correla-
tion lengths �“Bayesian smoothing”�, or model-choice
frameworks applied to variable resolution spatial models
�Bayesian splitting/merging�. Typical 1D CSEM data can be
modeled with quite parsimonious models, typically O�10�
parameters per common midpoint. Efficient optimizations
for the CSEM problem must address the challenges of poor
scaling, strong nonlinearity, multimodality and the necessity
of bound constraints. The posterior parameter uncertainties
are frequently controlled by the nonlinearity, and linearized
approaches to uncertainty usually are very poor. In Markov
Chain Monte Carlo �MCMC� approaches, the nonlinearity
and poor scaling make good mixing hard to achieve. A novel,
approximate frequentist method we call the Bayesianized
parametric bootstrap �sometimes called randomized maxi-
mum likelihood� is much more efficient than MCMC in this
problem, considerably better than linearized analysis but
tends to modestly overstate uncertainties. The software that
implements these ideas for the 1D CSEM problem is made
available under an open-source license agreement.

INTRODUCTION

In recent years, controlled-source electromagnetic �CSEM� or
eabed logging �SBL� techniques have become a popular element of
he hydrocarbon exploration toolkit. This method is designed to de-
ect resistive anomalies in the marine subsurface which might be
aused by hydrocarbon accumulations. Taken in conjunction with
eismic data for geological and structural delineation, this is poten-
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ially a powerful discriminator between high- and low-gas satura-
ions, because gas saturation controls resistivity in a far more linear
ashion than it does seismic reflectivity in AVO studies. The CSEM
echnique is most useful when sufficient geological knowledge is
vailable to exclude lithological causes of high-resistivity near
nomalous zones, such as sequences of evaporites, volcanics, or car-
onates.

Many articles have appeared outlining the general nature of the
SEM acquisition framework �Constable �2006�, Constable and
rnka �2007�, Tompkins and Srnka �2007�. There are practical limi-

ations on the suitability of the technique originating in basic physics
rinciples, such as the impact of the airwave in shallower waters, the
imitations on depth of penetration and detectability imposed by ab-
orption, and the thermal noise of the transmitter-receiver system,
requency content restrictions from skin depths, etc. A large number
f offshore petroleum prospects still fall within the domain of appli-
ability of the technique.

In our view, two overriding factors limit the usefulness of the tech-
ique. First is that deeper penetrations require low frequencies, and
he diffusive energy fronts do not justify sounding arrays with spac-
ngs very much smaller than the depth of interest, which automati-
ally limits resolution. Second, the dynamic range of conductivity
rom seawater to resistive anomalies or deeper rocks usually is at
east several decades. These large contrasts in resistivity make the
hanges in observed fields large and thus useful in an exploration
ontext, but make the inverse problem very nonlinear. In an inverse-
roblem context, the subsurface response is very poorly modeled as
weak deviation from some agnostic reference model, so the Born
pproximation, so beloved and central to seismic imaging, is rarely
ery useful for real CSEM data. Because the forward model is
trongly nonlinear in any resistivity parameter, the solution null
pace nearly always is multimodal, badly scaled, and contorted in
hape. We agree strongly with Snieder �1998� that this makes these
roblems particularly difficult.

Meaningful 2D or 3D CSEM inversion thus is a difficult problem.
he strong absorption induces a large dynamic range in the gradient
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F152 Gunning et al.
r sensitivity matrices, and because this makes the problem very
oorly scaled, nearly all inverse approaches require additional terms
o improve the stability or conditioning of the matrices. For diverse
easons, the bulk of the inverse-theoretical work done in the EM
ommunity is not overtly statistical in nature, but rather approaches
he stability problem using pragmatic Tikhonov-regularization

ethods. This introduces the awkward problem of how to estimate
he free parameters in these regularizing operators and make mean-
ngful statements about what these pieces imply about model resolu-
ion and uncertainty. Regularization, in our view, is an unsatisfactory
ramework for the problem of integrating other kinds of information,
ike rock-physics models, or data from seismic acquisition.

Most of these conceptual difficulties disappear if a more explicitly
tatistical approach is taken to the inverse problem. Evans and Stark
2002� put the case eloquently: “Describing inverse problems in sta-
istical language permits a unified view of standard inversion tech-
iques, and provides reasonable criteria for choosing among them.”
ambridge et al. �2006� provide a theoretical framework strongly
ligned with ours and offer a useful summary of the Bayesian ap-
roach to inverse problems and model selection.

Bayesian frameworks allow inverse problems to be stated as in-
erence problems for the posterior distribution of a suite of model pa-
ameters and possible metaparameters, and questions about resolu-
ion or uncertainty are answerable directly from this posterior distri-
ution. Two recent geophysical examples using empirical-Bayes
deas for metaparameter estimation are Malinverno and Parker
2006� and Mitsuhata �2004�. Because such statements are condi-
ional on the chosen model, a framework that enables sensible com-
arison of different models, or families of models — even of varying
imensionality — is very desirable �Hoeting et al., 1999�. Bayesian
pproaches also are the most natural way to introduce knowledge
rom other data sources or professional expertise with its requisite
recision and interdependencies, via additional likelihood terms or
riors. Multidisciplinary information of this form is germane to
arth resources delineation.

In this paper we show two new Bayesian approaches to the ques-
ion of resolution and uncertainty for the CSEM problem and intro-
uce the open-source reference code DeliveryCSEM, implementing
hese ideas for the 1D problem. This paper and the code implementa-
ion are confined to the isotropic case, though it is now recognized
hat modest electrical anisotropy is more common than not. The cen-
ral ideas of this paper will extend readily to the anisotropic case, and
he presentation is simplified when we need not carry the tensorial
otational baggage along.

We do not wish to be misconstrued as advocating isotropic 1D in-
ersions for problems that are clearly dominated by 3D effects or
ther forward-modeling issues. Nonetheless, for reasonably flat ge-
metries without significant bathymetry issues, the 1D approach is a
ood first approximation to the 3D earth. Much can be learned about
he limits of resolution and inversion uncertainties by a successful
ttack on the 1D problem.

We do not focus on the virtues or drawbacks of acquisitional de-
ails such as the number of frequencies to be measured, types of
elds to be recorded, use of phase, or other similar details. Other pa-
ers, for example Key �2009�, take up these issues. Our central
hemes are resolution and uncertainty via Bayesian approaches, so
he bulk of this paper is devoted to these topics. The novel contribu-
ions of this paper are the application of model-selection, empirical-
ayes, and Bayesianized bootstrap ideas to CSEM applications.
The layout of this paper is as follows. In “Approaches to resolu-
Downloaded 16 Nov 2010 to 130.116.144.125. Redistribution subject to
ion issues,” we introduce the central ideas needed for Bayesian ap-
roaches to resolution inference. In “Constrained Bayesian inver-
ion,” we present the machinery needed for resolution approaches
ased on variable correlated priors on a fixed grid. “Model hierar-
hies — splitting methods,” shows how this machinery can be used
o infer resolution via model choice, with the spatial correlations
witched off and the Bayesian model choice operating over models
f varying spatial discretization. The fundamental workhorse in both
pproaches is an efficient globalized, bound-constrained nonlinear
east-squares optimization, so we visit several important topics in
Optimization details:” efficient bound-constrained Gauss-Newton
nd Marquardt techniques, multimodality and global optimization/
numeration, and mode distinguishability or connectivity. Two
ethods for uncertainty evaluation follow in the section titled “Ap-

roaches to inversion uncertainty,” one fully Bayesian �MCMC�, the
ther a faster, approximate technique we call the Bayesianized para-
etric bootstrap. Some “Example problems” are presented to illus-

rate all the various ideas, followed by a brief discussion of the “Soft-
are,” and the “Conclusions.”

APPROACHES TO RESOLUTION ISSUES

Resolution is most effectively understood as an interaction be-
ween the spatial representation �gridding� of an inversion model
nd the effective number of degrees of freedom which can be esti-
ated meaningfully from the data. From this angle, there are two

istinct approaches to resolution. First, if a somewhat fine spatial
odel m is supplemented by well-chosen metaparameters � ex-

ressing effective spatial correlation, the resolution is embodied in
he marginal distribution for the correlation parameters � given the
ata. Overfitted, or excessively deconvolved, models correspond to
ow-probability regions of the correlation-parameter posterior mar-
inal distribution�s�. Second, resolution can be approached as a
odel-selection problem of choosing, among a family of models k
1. . .N of varying spatial discretization, the model or models hav-

ng most posterior support in the data. Clearly the measure of support
mplied here must incorporate automatic penalties for overfitting, so
he statistical significance of the models is the central issue.

Both of these approaches can be expressed in a Bayesian frame-
ork. We use the usual notation L �d �m� for the likelihood of the data
�length nd� under model m, and p�m� for the prior probability of the
arameters in model m. The likelihood often is the most contentious
art of any Bayesian framework. It depends centrally on a model for
he “effective” noise, which is defined as the difference between

odeled and �processed� data. This difference clearly absorbs in-
trumental noise, external and cultural noise, and errors in the for-
ard modeling assumptions. Rarely is it beyond dispute that the

omputer model adequately models the physics. One often works
ith the pragmatic assumption that the data are well-processed �mis-

akes/outliers removed etc.�, the errors are zero-mean independent,
nd the dominant unknown is the variance of the error. For analytical
onvenience, Gaussian error models are most useful, so the likeli-
ood often is of the form L�d /m��exp��1

2 �d� f�m��TCD
�1�d

f�m���, with f�m� the forward model for the data, and the un-
nown noise parameters � i buried in the matrix CD�diag�� i

2�.
ome kind of dilution of this likelihood distribution might be re-
uired to model correlated or biased data.

To provide some context, the 1D forward CSEM problem consid-
red here is a layer-based model, usually with the transmitter close
�30 m� to the seafloor, receivers for electric or magnetic fields on
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Resolution and uncertainty in 1D CSEM F153
he seafloor, known resistivity through the seawater profile, and un-
nown resistivity in each of some nlayers layers under the mudline, ter-
inating in a half-space. The forward problem and sensitivity ma-

rix �f i /�mj for this configuration is a well-studied problem �Consta-
le et al., 1987; Key, 2009�, with received fields a simple sum of
ankel transforms with kernels arising from reflectivity recursions

unning down the stack of layers. The measurements di are taken as
lectric or magnetic fields, unrolled over frequency and transmitter-
eceiver offset. Typically, the noise estimates � i initially are estimat-
d at some fraction of the field amplitude, say 5%, so these have a
arge dynamic range. �The large range is required by the absorption
f modeling errors as much as anything else�. The acquisition usual-
y attempts to keep the source dipole a constant height over the sea-
oor, and this can be used to advantage in splining the fast Hankel

ransforms in the forward model to retrieve fields at all offsets for a
iven frequency and transmitter height.

In the model selection problem, the central entity is the marginal
odel likelihood �MML�, or evidence, obtained by integrating the
ayesian posterior density over the model parameters m in model k:

�MML�k���L�d�m�p�m�dm .

In general, the integral is quite difficult to perform, but approxi-
ations like the Laplace approximation are very effective if the pos-

erior is modestly compact �Raftery, 1996�. It is known that the
aplace approximation behaves asymptotically like the Bayes infor-
ation criterion �BIC� �Denison et al., 2002�, and thus has the re-

uired “Occamist” characteristic of favoring the simplest model that
dequately explains the data.

It is less obvious how the notion of “simplicity” is quantified and
nduced in the context of single models with metaparameters. Al-
hough a strict Bayesian would confine the statement of “posterior
nowledge” to the full posterior distribution, certain characteristics
f this distribution usually are of significant interest as point esti-
ates. In particular �1� the largest mode of the joint posterior distri-

ution — usually called the maximum a posteriori point �MAP�, and
2� the MAP point of particular marginal distributions, are of inter-
st. Within the extremely common multiGaussian framework for
oise and prior distributions, possibility �1� coincides with the mini-
a of the negative log-posterior, a function which often closely re-

embles typical “objective” functions used in regularization ap-
roaches.

Statisticians of all flavors reflexively associate point-estimates
ith maxima of probability functions, and maximum-likelihood
ethods are virtually canonical in the statistical community. Under
aussian error models, these invariably lead to least-squares mini-
ization problems. For this reason, regularization approaches based

n the optimization of penalized objective functions like

� 2�m,���� misfit
2 �m���	Dm	2, �1�

here � is a “free” parameter, and D is an operator whose null space
oes not overlap that of the forward model in � misfit

2 �m�, always seem
hilosophically unsatisfactory because the mathematical optimum
learly is at ��0. Statisticians instinctively will feel that something
s missing from the “objective function” that favors simplicity �large
�.
A well-known approach to this difficulty is Morozov’s discrepan-

y principle �Hansen, 1998�. Assuming the model is rich enough to
otentially overfit the data, the multiplier � can be set by minimizing
Downloaded 16 Nov 2010 to 130.116.144.125. Redistribution subject to
quation 1 to a desired level of misfit, say, � misfit
2 �m��nd. It is diffi-

ult to make statements about a strongly nonlinear problem with
reat confidence, but we might take inspiration from what is known
bout the linear case: Hansen’s discussions are quite extensive, and
ecommend, roughly, � misfit

2 �nd�np, where there are np effective
egrees of freedom. Essentially, the target value nd�np is based on
he known frequentist result in linear regression that the �error-
caled� residual sum of squares has expectation nd�np if the regres-
ion model is the same as that producing the data, and the error vari-
nce is correct.

Use of the discrepancy principle is central to the well-known Oc-
am code of Constable et al. �1987�, but this framework does not
ield a point estimate that is obviously the maximum of some distri-
ution.Acommon criticism is that the technique is rather sensitive to
he noise levels buried inside � misfit

2 �m�, and in practice these usually
re poorly known �Farquharson and Oldenburg, 2004; Mitsuhata,
004�. Pessimistic estimates lead to oversmoothed solutions, and
veroptimistic estimates might prevent convergence at all. It is com-
on to see target values � misfit

2 �nd invoked, even for rather rich
odels, and Hansen has demonstrated this leads to oversmoothing

n the linear context.
In a Bayesian approach, maximum likelihood estimation is possi-

le for problems with smoothing contributions ���, but it is neces-
ary to treat the smoothing parameters as genuine metaparameters in
hierarchical framework. The normalization associated with the
etaparameters then introduces the contributions that favor large

alues of the smoothing and compete with the data misfit terms. A
ayesian approach naturally will induce simplicity in the choice
mong models and in the inference of metaparameters �e.g., smooth-
ng� within a model, so Occam’s razor is a natural consequence.
hus we would see “variable-smoothing” type inversions as a spe-
ial kind of Bayesian inversion, rather than a different approach.
arker �1994� has remarked that the Occam approach is “…lacking

heoretical underpinnings, but… has been found to be remarkably
ffective in practice.” We believe the Bayesian approach described
n the following section, using spatial correlation as a metaparam-
ter, supplies this missing theory.

Some known invariances for the 1D CSEM problem are useful to
ecall at this point. Loseth �2007� has shown that if a subsurface re-
istive layer is present against a more typical �say 1 �.m� conduc-
ive background, the dominant mode of energy transmission is a TM

ode, with vertical electric field. His analytical approximations for
he Hankel transforms show that this response is controlled by the re-
istivity-thickness product of the anomalous layer. We expect then
hat the response of a packet of layers thinner than the “natural” data
esolution is controlled by the resistivity-thickness product of the ef-
ective medium formed by these layers. This forms a useful test case
or many of the subsequent ideas.

CONSTRAINED BAYESIAN INVERSION FOR
MODEL, NOISE, AND SPATIAL CORRELATION

Our inversion code can perform several flavors of inversion, all of
hich can be understood as special cases of the following general

ramework. We are interested in inverting for np model parameters
i� log10 �i �the layer resistivities are �i�, jointly with metaparam-

ter-parameters describing spatial correlation structures ��� or pa-
ameters of the noise distribution �� n�. The full parameter vector is

� �m,�,� n�.
A standard Bayesian approach to inversion �Tarantola, 1987�,
 SEG license or copyright; see Terms of Use at http://segdl.org/
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F154 Gunning et al.
ased on a multiGaussian model of the errors and with a multiGauss-
an expression for the prior with prior mean mp and covariance

p���, yields a posterior density

��M�d� �
e��d � F�m��TCd�� n��1�d�F�m��/2

�2��nd/2�Cd�� n��1/2

�
e��m � mp�TCp����1�m�mp�/2

�2��np/2�Cp����1/2 . �2�

Here nd is the number of measurements, and we will consider the
articular case where Cd�� n��� n

2 diag�� i
2�, the covariance matrix

f the total error, is assumed diagonal and known up to the scalar � n
2.

imilarly, the unknown metaparameter-parameters � might appear
n Cp���. For normalization and model-comparison purposes, the
eterminant terms and dependencies on np are important.
The first problem is which choice of prior is suitable for a particu-

ar model-layer resistivity. Typical CSEM hydrocarbon applications
ill occur in clastic-dominated areas, where shale abundances might
e 80% or so. The model-layer resistivity is an “effective medium”
roperty of a rock composite, whose �frequency� distribution is a
omplex function of rock-type abundances, the internal spatial ar-
angement of rock types, the internal variability within a rock type,
nd the effective-medium laws. In general, we should expect it to be
complex mixture distribution resulting from these factors. A rigor-
us calculation is doubtless rather subjective, but we can say a few
efinite things: It will have a heavy right tail, resulting from the light-
r abundances of low-porosity facies, and it is reasonable to apply a
trict lower bound, computed from the Hashin-Shtrikman lower
ound on brine and shale-matrix mixtures via sensible upper-bounds
n shale porosity �e.g., 50%�. A typical, credible number is �

0.8 �m �log10�����0.1�.A truncated Gaussian distribution for
� log10��� can be used to cover the prior support comfortably, has

hese required properties, and the added advantage of analytical con-
enience. If bounds are not applied, the logarithmic transform re-
ains the advantage of guaranteeing positive resistivities.

Spatial smoothness-type beliefs about the model can be expressed
y embedding spatial correlation into the multivariate prior distribu-
ion for the model parameters. We will use forms derived for the un-
ounded cases and impose constraints for the bounded case as re-
uired. A convenient form to work with is the Gaussian prior p�m�

N�mp,Cp�, where mp is a prior mean or prejudice about the sub-
urface structure. It is reasonable to suppose the prior marginal vari-
nce of any layer parameter �as imposed by the mixture distribution
pproximations above� to be independent of any vertical correlation.
hus it is simpler to specify Cp directly, rather than Cp

�1, as the diago-
al elements contain the prior marginal variances. Specifically, if
here are i�1. . .np layer parameters mi, whose prior marginal stan-
ard deviations are set to a common value � p, the exponential corre-
ation matrix Cp,ij�� p

2 exp��� �i� j�� is a convenient possible
orm for Cp, with a “lattice” correlation length 1 /�.

To forestall confusion, we emphasize that we will make inferenc-
s about an effective correlation length 1 /� for the large-scale resis-
ivity parameters m, as estimated by CSEM data solely, and not to be
onfused with correlation lengths inferred, for example, from wire-
ine or core data. Although the correlation length might be argued to
e an intrinsic geological property, a Bayes MAP estimate of this ef-
ective correlation length suggests the resolution characteristics of
he measuring technique used to acquire the data.

Now C has a tridiagonal inverse which, for convenient compari-
p

Downloaded 16 Nov 2010 to 130.116.144.125. Redistribution subject to
on with other literature using the discrepancy principle, can be writ-
en in the form

Cp
�1������T��diag�Wp,1

2 ,Wp,2
2 ,Wp,2

2 , . . . ,Wp,2
2 ,Wp,1

2 �,

here � is the np �np finite-difference derivative matrix

�
��1 1 0 0 ¯

0 �1 1 0 ¯

¯ ¯ � � ¯

�,

nd the correlation length 1 /� is related to the “regularizing
trength” � by

�����sinh�1 1

2�� p
2� .

Further connections of the inverse covariance implied by the regu-
arizing matrix � with geostatistical ideas are drawn out in Kitanidis
1999�.� Maintaining the prior standard deviation requires that the
eights Wp vary with � also

Wp,1
2 �

1

� p
2�1�e���

, �3�

Wp,2
2 �

1�e��

� p
2�1�e���

. �4�

Clearly, � and � are alternative ways to track the exponentially
orrelated prior; we will use the parameter � henceforth as the meta-
arameter. Thus, if we define Wp����diag�Wp,1

2 ,Wp,2
2 ,Wp,2

2 , . . . ,

p,2
2 ,Wp,1

2 �, the inverse then is Cp
�1������T��Wp���.

In the absence of correlation �� →	, or ��0�, the Wp,i are relat-
d to the prior marginal standard deviation � p by Wp,i�1 /� p. The
eterminant �Cp��� p

2np�1�e�2��np�1, with the property �Cp�→0 as
→0, is helpful to know. The question of how to choose a suitable

rior distribution for � is rather tricky. Fortunately, the posterior dis-
ribution for � is only very weakly influenced by the prior, so we use
flat prior on � for simplicity.
The noise parameter � n is a global scalar correction term for the

white� Gaussian noise distribution, and we presume the error esti-
ates � i in Cd�� n��� n

2 diag�� i
2� are sensible estimates based on

reliminary data analysis, e.g., 5% of the expected field amplitude,
own to some typical noise floor for the receivers. �Absolute noise
oors are dependent on electronics design, possibly electrode chem-

stry, receiver motion, stacking and processing considerations, etc.,
nd are typically around 10�15 V /Am2 for E fields, 10�18 T /Am for
�. This absorbs measurement and modeling errors. The additional

erm � n is an O�1� correction parameter, corresponding fairly close-
y to the “unknown variance” parameter of traditional Bayesian re-
ression treatments, e.g., Gelman et al. �1995�. We will take the prior

P�� n� to be flat �constant� for simplicity.
There are two possible approaches to the inference problem at this

oint: pure maximum a posteriori or empirical Bayes. The general
deas are easier to see in the fully linear problem, which, for reasons
f space, we have supplied in the supplementary material Appendix
of Gunning �2010�. This material supplies some derivation details
e skip in the following. The first and simplest idea is a pure “maxi-
um a posteriori” approach, setting inferences at a global minimum

f the negative log posterior of the full joint distribution in m,�,� .
n
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Resolution and uncertainty in 1D CSEM F155
his objective function in the optimization step could be written
dropping nd log�2�� and log�diag�� i

2��� as

�2 log���m,�,� n�d��

� 2� �d�F�m��TCd�� n��1�d�F�m��
�nd log�� n

2�� �m�mp�T���T��Wp��m�mp�
� log����T��Wp���np log�2�� . �5�

Where the prior has weak influence and the degrees of freedom
re few, this is a simple and effective approach. The estimates of �
ill be biased if the data are too noisy, however, as shown in the sup-
lementaryAppendix C �Gunning, 2010�.

The smoothing and noise parameters really are meta-parameter in
hierarchical construction. The empirical Bayes �EB� approach is to
stimate these parameters at the maximum likelihood point of their
arginal distribution, which is known to be less biased than the joint
aximum-a posteriori method. The derivations for the EB case are

omewhat messier, so we will show how things run for the joint max-
mum-a posteriori case first and summarize the EB results later.

In the joint maximum-a posteriori case, we minimize equation 5
y cyclically alternating minimizations on � n, �, and m, which is
ot inefficient if the three blocks are not strongly correlated in the
osterior.4 The minimization on � n involves only the first two terms
nd is trivially a standard ML variance estimate:

� n
2�

�d�F�m��TCd
�1�d�F�m��

nd
.

ubstituting this again into equation 5, and dropping some con-
tants, yields the reduced objective

� J
2�nd�1� log��d�F�m��TCd

�1�d�F�m��/nd��

� �m�mp�T���T��Wp��m�mp�

� log����T��Wp�� . �6�

he optimization on � then involves only the last two terms, a prob-
em we can write as

� smooth
2 ���� �m�mp�T���T��Wp�����m�mp�

� log����T��Wp����� .

The determinant must be evaluated numerically in general �an
�np� operation because �T� is tridiagonal�, and this problem can be

olved using any suitable 1D optimization routine, e.g., Brent’s
ethod �Press et al., 1992�. We have found it prudent to step-limit

he optimum found in this phase to within a trust region centered on
he current value of �, typically ��0.5.

The final optimization in the cycle is for m. For small changes in
about a current model m0, by linearizing the log� � expression, the

arying terms in equation 6 needed for the optimization can be writ-
en as

� m
2 � �d�F�m��TCd

�1�d�F�m��/� n
2

� �m�mp�T���T��Wp��m�mp� . �7�
The Gauss-Newton step thus is the standard Bayesian update,

ith the data covariance merely adjusted by the current noise esti-

4This is a good assumption for � n and m �a well known statistical phenome
he latter pair.
Downloaded 16 Nov 2010 to 130.116.144.125. Redistribution subject to
ate � n
2. The full Newton update for this optimum, with the Jacobian

ij 
�Fi/�mj, is

m�� 1

� n
2JTCd

�1J���T��Wp��1

� 1

� n
2JTCd

�1�d�F�m��Jm�� ���T��Wp�mp� .

Another important traditional form for the Newton step 
m
m�
m is

�8�

ith implied Hessian H and gradient �� m
2 .

For the cases where no estimation of � n is desired, the same for-
alism applies, except the optimization on � n is omitted and � n→1

verywhere else. Similarly, if no optimization on � is performed, �
s fixed at the desired value in all equations.

For the EB case, the derivations follow a similar spirit to supple-
entaryAppendix C in Gunning �2010�, save that one uses local lin-

arization and the Laplace approximation in estimating the marginal
istribution �marginal� for �. The mode of the marginal for � n is
traightforward, yielding the classical unbiased estimate

� n
2�

�d�F�m��TCd
�1�d�F�m��

nd�np
,

nd to a good approximation the marginal ���,� n �d� for �
as an additional term in the optimization ����,� n �d�
exp��� smooth

2 ��� /2��:

� smooth
2 ���� �m�mp�T���T��Wp�����m�mp�

� log����T��Wp�����

� log� 1

� n
2JTCdJ���T��Wp����� .

�9�

Clearly, there is nothing particularly magical about the choice of
he exponentially correlated prior. We have chosen it because the in-
erse �the “precision matrix”� maps closely to the sorts of structures
sed in regularization approaches �i.e., the connection and differenc-
s are clear�, and the determinant is simple. Other choices could be
ade, and blockwise forms arising from the use of “tear-surfaces”

discontinuities in the correlation� also would pass through the fore-
oing derivation simply.

xample of resolution via correlation meta-parameters:
ayesian smoothing
An example of how the empirical Bayes apparatus works, for

xed known noise, but unknown correlation parameter �, is shown

t probably not for � and m: a joint Newton scheme would be much better for
 SEG license or copyright; see Terms of Use at http://segdl.org/



i
o
e
n
5
f
t
a
e

s
e

o
p
T
n
o
c
t

�
t

C

w
t

g
v

1

2

3

t
p
t
s
i

t
b

E

m
1

F
p
n
m
�
t
d
t

F156 Gunning et al.
n Figure 1. Synthetic data �inline �E� field at 0.25, 0.75, 1.25 Hz,
ver offsets 1–12 km� for the depicted “truth-case” model are gen-
rated with varying noise levels by adding independent Gaussian
oise deviates of the required standard deviation �e.g., 0.05�E� for
% errors� to �E�. The uneven sampling �dropouts, etc.,� is inherited
rom a real data set “template,” but the model and data all are syn-
hetic. The inversion model is quite finely discretized, using layers of
pproximately 50 m to 100 m, and the marginal priors for each lay-
r are set at mj �N�0,1�.

MODEL HIERARCHIES — SPLITTING METHODS

Another approach to resolution is to perform model-selection on a
et of models of increasing spatial resolution. Clearly, an exhaustive
numeration of a full suite of possible layer-grids, using, say, the the-
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igure 1. �a� Bayesian smoothing MAP inversions �� as a meta-
arameter� of CSEM data for the “truth-case” model shown, for
oise levels 10%, 5%, and 2%. Though the termination at the opti-
um is not explicitly controlled by � RMS

2 
��d�F�m��TCd
�1�d

F�m�� /nd�1/2, � RMS
2 values are typically O�1� at the optimum; in

his case, 1.21, 1.09, 1.02, respectively. Clearly resolution is strongly
ependent on noise levels. �b� Typical data and fit at 5% noise. Note
he error bars apply to �E�, not log �E�, despite the scales.
10
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ry of integer partitions based on some finer underlying lattice, will
roduce a huge �combinatorially large� number of possible models.
hese cannot be computed exhaustively, so some kind of heuristic is
ecessary for exploring model spaces. An obvious idea is some kind
f recursive algorithm which either will adaptively refine a very
oarse model, or remove detail from a fine model, such that resolu-
ion is created at the depths statistically justifiable from the data.

We rank models on the basis of the marginal model likelihood
MML�, obtained by integrating the Bayesian posterior density over
he model parameters. For model k the MML is defined as

��k���L�d�mk�p�mk�dmk.

The Laplace approximation for the MML �Raftery, 1996�, for our
SEM problem, is

�log���k���
1
2

�d�F�m��TCd
�1�d�F�m��/� n

2

�
1
2

nd log�� n
2��

1
2

�m�mp�T���T��Wp�

��m�mp��
1
2

log����T��Wp��

�
np

2
log�2���

1
2

�log�H��, �10�

ith all terms evaluated at the MAPpoint, the Hessian H as per equa-
ion 8, and the smoothing ��0.

As a reference implementation, we have adopted a recursive
reedy search algorithm based on successive refinement of an initial
ery coarse model. The algorithm proceeds as follows:

� Compute the MAP solution and MML for a very coarse, suffi-
ciently deep two-layer model �problem of dimension np�2�.
This becomes the parent model.

� Loop over all layers in the parent model, split each layer into
two by turns to make child models, and invert for the MAP
point and MML for each child model �np models of dimension
np�1 each�. Record the best solution �favorite child� and best
MML.

� If the best child MML is an improvement on the parent’s MML,
embed the split, and iterate the process with the best child as the
new parent. If no solution is better, terminate the algorithm on
the np dimensional parent model.

In each case, default starting points for the optimization are ob-
ained by injecting the parent MAP parameter values into the child
arameter vector in a way that preserves the existing spatial distribu-
ion. Global inversion is very desirable for each candidate model, as
uperior solutions might not be in the basin of attraction of the start-
ng point inherited from a parent.

These coarse models should require no spatial smoothing be-
ween layers, so in all the expressions above, ��0 and the Wp will
e calculated from the univariate prior variance.

xample of resolution via model-selection

A standard test problem in the CSEM literature is the canonical
odel �Constable, 2006�, a 100 m-thick, 100 �m-reservoir buried
km deep in shales under deep water. An example of the evolution
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Resolution and uncertainty in 1D CSEM F157
f these split models for the canonical test model is shown in Figure
.

It is clear that the reference algorithm above will arrive at relative-
y parsimonious models, but it is not clear that it always terminates at
he simplest conceivable model. An alternative, more expensive al-
orithm based in splitting and merging can achieve the latter; an ex-
mple is shown in Figure 10 later in the paper.

OPTIMIZATION DETAILS

rojected Newton or Marquardt methods with bound
onstraints

Experience shows that unconstrained inversion �very wide priors�
ften produces unphysically low values of resistivity in the shallow-
r layers. Such values might occur not only at the final optimum, but
uring the optimization phase, and might allow the minimization to
ander into an unwanted basin of attraction. Placing a sensible low-

r bound truncation in the prior distribution cures this problem, but
ntroduces the problem of how to efficiently control the optimization
n the presence of such bounds.

For badly scaled problems such as the CSEM problem we ad-
ress, naive ideas easily can induce slow convergence, so some sub-
lety and care in implementation is required. We have implemented
he projected Newton technique line-search described by Bertsekas
1982� and Kelley �1999� and a projected trust-region �Marquardt�
ethod, adapted from Madsen et al. �2004�. The implementation re-

uires some care, so we make this available in Appendix D of Gun-
ing �2010�.

When optima occur at parameter boundaries, the Laplace approx-
mation for the marginal model likelihood is certain to be less accu-
ate, as the probability is truncated in at least one parameter. It is dif-
cult to estimate the correction factors necessary, but the approxi-
ation will give at least an estimate of the order-of-magnitude of the

ntegral.
Currently, all parameters �log10���� share the same bounds. De-

ault bounds of �0.1 � log10��� � 4 are applied, the lower corre-
ponding to 0.8 �m, a respectable lower bound for shales based on
ashin-Shtrikman effective media theory. The bounds can be dis-

bled or altered if desired.
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igure 2. Canonical model under splitting: dark gray� truth cas
Bayesian smoothing MAP inversion on fine grid for comparison.
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lobalization — multiple start solutions

Virtually all modes of inversion except either very low-dimen-
ional models or excessively oversmoothed finer models will suffer
rom multimodality. This is most obvious in dependence on the ini-
ial guesses in the optimization runs and algorithm dependence in the
olutions found �e.g., the details of the line search�. Reasonably rich
odels with weak smoothing usually have a significant number of

ocal modes; some might be very poor fits, but several might be re-
pectable.

The best strategy for dealing with this is to use models as parsimo-
ious as the purpose of the study permits and attempt to enumerate
nd quantify as many local modes as possible. The code can be in-
oked with a suite of strategies, attempting multiple optimization
asses at each point in the code where �by default� a single local opti-
ization is performed �in addition to the default local-optimization

ass�. A variety of strategies is conceivable; we have implemented
he following suite. �1� Default �and mandatory�: use a starting point
etermined by the startup file. �2� Try N random starts in the hyper-
ube m̂i�1 � mi � m̂i�1, where m̂ is the optima found by strate-
y �1�. �3� Form starting points formed by flipping adjacent layer re-
istivities in the solution m̂, pairwise, at layers where a reasonable
ontrast seems likely as judged by successive jumps in m̂i. The latter
trategy is designed to �hopefully� lie in different basins of attraction
o the existing m̂. Some simple thought experiments and numerical
xperience show that the MAP solution for underresolved �fine-
ridded� models tend to place all the required high resistivity in a
ingle layer, so simple multimodality will exist in the precise loca-
ion of that anomalous layer.

At the end of the mode enumeration, the code checks the modes
or duplicates using some naive tests �e.g., Euclidean distance of

AP points less than some threshold� and sorts the modes by mar-
inal model likelihood �usually very closely tied to rms misfit�. Iter-
tion, response, and model depth-profile files are written for each
ode.
Atypical example of distinct multiple modes is shown in Figure 3.

hese have the typical “layer-flipping” behavior mentioned before.
nother useful function of the mode-enumeration facility is to check

hat the local modes occur at genuine optima of the -ve log posterior,
ot simply at points where the Newton scheme could make no fur-
her progress caused by coding errors, bad scaling, poor termination
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F158 Gunning et al.
riterion, or other gremlins. Figure 3 shows a plot of the final objec-
ive function from 500 random starts of a typical problem, where the
epeatable convergence to one of seven possible solutions is clearly
vident. In this case, one mode clearly is very superior, and it is reas-
uring to see that it has an ample basin of attraction.

ode uniqueness checks

An important consideration in any “mode enumeration” strategy
s to avoid the double-counting of modes and understand the relation
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igure 3. �a� Multiple local-mode MAP solution depth profiles of an
ight-layer unsmoothed problem, shown as distinct curves. �b�
Log�posterior� of a large ensemble of random starts. Repeated con-
ergence to particular optima is good evidence of sensible termina-
ion criteria.
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etween modes. We know from simple thought-experiments that
here can be distinct optima which are separated only by weak proba-
ility barriers in the posterior surface, and knowledge of these near-
egeneracies might be useful in constructing MCMC strategies,
mong other reasons.

A particularly interesting question is how to construct the “lowest
nergy” path connecting two modes. This path should look like the
ray geodesiclike path of Figure 4. This object might form a sort of
ackbone along which ridges of the posterior probability might
orm. One possible way to seek such paths is to minimize the path in-
egral

�AB��
A

B

� 2�M�d� �11�

long a smooth parametrized path from MAPpoint MA �belonging to
odeA� to a distinct mode MAP point MB. For � 2, we would use the

ull Bayes -ve log posterior, equation 5, or at least the varying pieces
f it.Algorithms to generate such paths are described inAppendix A,
ith some examples.
In summary, our findings are these: for many problems, we find

he modes can be linked along paths whose probability barriers are
ery weak relative to the sampling fluctuations expected in the pos-
erior. For certain near-degenerate cases, the paths correspond to sets
f layers behaving as an effective medium with strictly known up-
caling laws �e.g., responses depend only on a sum of resistivity-
hickness products�, but in general this is not the case. In such cases,
ampling algorithms for the model uncertainty ought to be able to
isit all the modes, and the chief challenge for such algorithms is the
raversal of the twisting, steep-sided ridges of the posterior, not
umping between isolated modes per se.

APPROACHES TO INVERSION UNCERTAINTY

In Bayesian inversion, we emphasize that the full posterior distri-
ution embodies all we can know about the model, and point esti-
ates �e.g., MAP solutions� are very imperfect as tools for making

ecisions. Ideally, parameter inference from CSEM data should take
nto account model uncertainty and parameter uncertainty.

Within a model, typical approaches to parameter uncertainty will
nvolve computing posterior covariance matrices from the inverse of
he Hessian at MAP points. This is very useful, efficient, and usually
atisfactory. But because the nonlinearity in CSEM is severe, the lo-

Mj

A

B

Mi

igure 4. Optimal path connecting modes A and B. The dots depict
odal points on a discretized approximation to the path, used in the
ptimization algorithms detailed in the main text.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Resolution and uncertainty in 1D CSEM F159
al linearization is unreliable, and methods based on sampling must
e adopted. Notwithstanding this, our implementation writes out lin-

arized MAP posterior covariances �C̃
H�1�, correlation-coeffi-

ient matrices ��C̃ij /�C̃iiC̃jj��, and 1-sigma posterior marginal error

ars �m̂i��C̃ii� for the inverted models, for comparison purposes.
n the hierarchical Bayesian smoothing mode, the “smoothing-free”

pproximate covariance �C̃
�JTCdJ /� n
2�� p

�2I��1� is used be-
ause the smoothing is an artificial construct.

In this section, we confine the discussion to uncertainties within
odels, and present two canonical approaches to sampling: 1� Mar-

ov Chain Monte Carlo �MCMC� from the Bayesian point of view,
nd 2� the frequentist parametric bootstrap method, adapted for the
ayesian framework we use. This latter technique has appeared in

he hydrology/petroleum “history-matching” literature under the ru-
ric “randomized maximum likelihood” �Kitanidis, 1995; Oliver et
l., 1996�, but we prefer the name “Bayesian parametric bootstrap.”

The MCMC approach is the method of choice for fully Bayesian
rameworks where little can be done analytically, and fast forward
odel evaluations are possible. It is the standard tool of choice for
ayesian statistical work. The validity of the MCMC algorithm rests
ritically on constructing a “model proposal” scheme which can vis-
t all the parameter space efficiently and satisfies the requirements
or reversibility. This is a very stringent requirement and greatly re-
tricts the ability of these samplers to use “optimization-related” in-
ormation to construct proposals. For posterior distributions that are
ery poorly scaled, distorted in shape, and modestly sharp in some
imensions, this makes the construction of good schemes very diffi-
ult. Liu �2001� is a good survey of the technique. The section
CMC below has the details of our implementation for 1D CSEM.
Frequentist statisticians are more used to dealing with uncertainty

stimation using varieties of the bootstrap or jackknife �Efron and
ibshirani, 1994�. These rely on performing separate parameter in-
erences for each member of a suite of synthetic data sets �generated
rom an initial best-fit model using the actual data�, so the use of opti-
ization apparatus is used explicitly for each bootstrap sample. This

as certain advantages for the CSEM problem, as the optimization
achinery in place is then able to help find good samples in the do-
ain of support of the posterior. Bootstrap theory has foundations

nd justifications related to large n �number of data� expansions of
he posterior �Hall, 1992� and can be expected to closely resemble
ayesian posteriors if the prior has weak influence �i.e., the likeli-
ood swamps it�. This latter is only partially true of the CSEM prob-
em, especially in somewhat over-parametrized models where the
ayesian prior is essential for stabilizing the posterior.
In the section “Bayesian parametric bootstrap” and Appendix B,

e show that the parametric bootstrap can be used in a Bayesian
ramework by treating the prior information as “effective observa-
ions” on the parameters. Clearly the number of “extra” data points
enerated in this way does not grow as we acquire more data, and if
he forward model has implicit degeneracies �i.e., near rank-defi-
iency in the sensitivity�, the “large n” assumptions of bootstrap are
ot strictly valid. Nonetheless, bootstrap theory has been shown to
e remarkably effective even for few data, as some of the test exam-
les show, and the ability to straightforwardly apply optimization
echniques helps greatly in visiting a greater spread of parameter
pace.
Downloaded 16 Nov 2010 to 130.116.144.125. Redistribution subject to
arkov Chain Monte Carlo

The code incorporates a tentative implementation of an MCMC
ampler suitable for sampling from low-dimensional models. It re-
ies heavily on information collected during the optimization and

ode enumeration passes. For convenience, suppose the mode enu-
eration has found a set of local optima i�1. . .Nm, which we char-

cterize by their MAP points m̂i, local approximate covariance �in-
erse Hessian� Ĉi and estimated relative probability �N�i� �we add
he subscript N to indicate the ��i� are normalized so �i�N�i��1.
hese are sorted by �N�i�, so mode 1 is estimated to be most likely.
he algorithm below is robust to the enumeration missing a mode as

ong as it is reasonably accessible by the random-walk proposals.
A Markov chain is a sequence of samples mj whose overall equi-

ibrium distribution approaches that of the Bayesian posterior
�m �y�.All that is required is a proposal kernel q�m� �m� for visiting
new state m� from an existing state m, which potentially can visit

he entire support of the distribution �irreducibility�, and a probabili-
y for accepting or rejecting a proposal. The art in MCMC imple-

entation consists in constructing proposal schemes that rapidly
ove across the support of the posterior.
In fixed dimensions, the well-known Metropolis scheme uses an

cceptance probability

� �min1,
��m��y�q�m�m��
��m�y�q�m��m� �,

here ��m� �y� is the posterior density of model m, given data y, up
o a fixed normalization constant. Models outside the bound con-
traints are assigned an extremely low probability.

At present, the sampler is implemented for known noise � n, and
ero smoothing, so we use equation 2 with Cp a diagonal matrix pop-
lated from the user-specified prior variances.

The proposal kernel q is a random mixture of three types of pro-
osal:

� Random jumps of form q�m� �m��N�m, Ĉ1�, where Ĉ is the
linearized posterior covariance �inverse Hessian� of the most
likely mode, and  is a scaling parameter tuned such that the fi-
nal acceptance rate from this kernel is about 0.25.

� “Layer-flip” moves seeking to exploit the possibility of nearly
constant resistivity-thickness product between adjacent layers.
The scheme below is a random jump in mj followed by a condi-
tional random jump in mj�1, designed so as to nearly conserve
this property between layers j and j�1. Layers have thickness
Tj, subsea depth dj.At initialization, a set of candidate layers SLF

suitable for possible layer flipping is assembled. Currently, ad-
jacent layers with Tj � dj /4 form this set. If a layer-flip is cho-
sen, the algorithm is:
Choose j�SLF at random. All parameters but mj,mj�1 will re-
main the same. Initialize JH�	.
Propose mj��mj�� mj, where � mj �N�0,fA

2�.
If mj��mL,j, compute  � �Tj10mj �Tj�110mj�1�Tj10mj�� /
Tj�1.
If � � 0�, propose mj�1� � log10� ��� mj�1, where � mj�1

�N�0,fB
2� and compute R� �Tj10mj��Tj�110mj�1� �Tj10mj� /

Tj�1. If R � 0, compute JH� �� mj�1
2 � ��log10�R��mj�1� /

fB�2�.
Accept the proposal with probability min�1,

��m��
��m� e�JH�. The

jump sizes fA,fB are tunable parameters, typically fA �0.4, fB

�0.02.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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F160 Gunning et al.
� “Mode jumps” from mode i into mode j of form

m��m� m̂j� m̂i.

This proposal is made with probability �N� j�, so q�m� �m�
��N� j�, and the Metropolis equation requires the piece
q�m �m�� /q�m� �m���N�i� /�N� j�. This kernel is designed on
the assumption that the random-walk part of the sampler will
stay close to the mode MAP point relative to the separation be-
tween modes, that modes will have a similar shape �local cova-
riance�, and that no tunneling between modes will occur �so the
“targeted” offset m̂i� m̂j is useful�. The mode weights �N� j�
are used in the proposal so little time is spent constructing a
jump to a mode that is very likely to be rejected. None of the as-
sumptions just outlined is a very safe bet for the CSEM prob-
lem, unfortunately.

Although Chen et al. �2007� express enthusiasm for the slice sam-
ler of Neal �2003�, our impression is that the component-wise slice
ampler has significant difficulties with highly correlated posteriors
as would any component-wise method�, and it is not clear to us how
o implement efficiently a multicomponent version for this problem.
ome experiments with hybrid molecular-dynamics samplers �see
hapter 9, Liu �2001�� have produced indifferent results. The funda-
ental difficulty is that, for many problems, the posterior is very

adly scaled �narrow in shallow parameters, wide in deep ones� and
ighly nonlinear for degenerate parameters: “steep-sided curving
alley�s�” in parameter space. The scaled random-walk proposal
orks well for modestly poorly scaled problems, but only those that
o not twist or snake. The fundamental difficulty is very strong, but
wisting parameter correlations, and virtually all MCMC techniques
e know of, have difficulties in this regime.

ayesian parametric bootstrap (or Monte Carlo)

An alternative method for assessing inversion uncertainty is an
lder technique called Monte Carlo simulation, referred to in more
odern literature as the parametric bootstrap. For overdetermined,

table inverse problems without any kind of Bayesian prior, the usu-
l procedure is to estimate a maximum-likelihood model m̂ by, say,
onlinear regression �i.e., minimize � misfit

2 � �y� f�m��TCd
�1��y

f�m���, estimate the parameters of the noise distribution of �
�y� f�m�� �e.g., a noise variance�, then simulate an ensemble of

ootstrapped “synthetic” data sets yi� f�m̂��� i, with � i new sam-
les from the noise distribution. A matching ensemble of boot-
trapped parameter estimates m̂i then are formed by nonlinear re-
ressions of each resampled data set, i.e., minimizing � i,misfit

2 � �yi

f�m��TCd
�1��yi� f�m���. The statistics of the ensemble m̂i then

re used for interval estimates, etc.
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Appendix B reviews the known result from linear theory that if the
oise model is correct and the noise variance unbiased, the mean
ootstrap model is an unbiased estimator of the mean �in fact the or-
inary least-squares estimate�, and the ensemble average residual
um of squares �RSS� is � n�p

2 distributed and has mean n�p. This
esult is what motivates suitable “target misfit” values in discrepan-
y principle approaches. Another important result is that the distri-
ution of the RSS of the bootstrap residuals with respect to the origi-
al data set is � p

2, but offset to the right by the regression misfit n�p.
his suggests the range of data misfits that should be encountered in

he posterior distribution.
In Bayesian frameworks, the objective function �log-posterior�

bove typically is augmented with terms from the prior, usually to
omething like

� 2� �y� f�m��TCd
�1�y� f�m��

� �m�mp�TCp
�1�m�mp� .

We show in Appendix B that the usual parametric bootstrap ar-
angement can be modified to work for this case, by treating the prior
s additional “data.” The upshot is that bootstrap model samples then
re found by an optimization problem with resampled synthetic data
nd resampled prior means mp. The distributional statement above
lso holds, with the number of data n now taken as n�p. In short, a
ayes MAP model m̂ is found using the real data y, and bootstrap

amples are found by optimization with synthetic data drawn from
yi �N� f�m̂�,Cd�, and a synthetic prior from mp,i �N�m̂,Cp�.

From the material and example shown in Appendix B, it emerges
hat the recentering of the prior mean, which is required in the fully
inear case to achieve rigorous, unbiased sampling, has a strong ef-
ect in the nonlinear and multimodal case, effectively oversampling
he posterior in the region close to the MAPestimate m̂. To overcome
his effect, at the price of some weak bias, we advocate a non-recen-
ered version, using the same recipe as above, but drawing bootstrap
rior means from mp,i �N�m̄,Cp�. The example below illustrates
ow this helps for a CSEM problem with well-understood ambigu-
ties.

xample: CSEM split-canonical model
f underresolved layers

Here we examine parameter uncertainties using a test case we like
o call the “split” canonical model: a 1 km overburden shale �m1�,
hen two 50-m reservoir layers �m2�, m3�, and shale underburden
m4�. “Truth-case” data are synthetically generated with the shale
ackground 1 �m �m1�m4�0� and the reservoirs 100 �m �m2

m3�2�. Because the reservoirs are thin relative to natural resolu-
ion, we expect the CSEM data to resolve only the total resistivity of
he two reservoir layers, but there might be subtle depths preferenc-

es.
Samples drawn using the recentered bootstrap

are shown in Figure 5. The spread of models is
fairly wide, but there does appear to be a concen-
tration of the anomaly in the deeper layer, param-
eter m3. This requires a little explanation. First, in
the Monte Carlo experiment where we generate
synthetic data from the standard three-layer ca-
nonical model with Gaussian noise, and invert for
bootstrap MAP split-canonical �four-layer� mod-
els using globalized mode-searching, about 75%
of the time the “most-likely mode” places all the

.0 1.5 2.0 2.5 3.0
m2

on the split-
histogram of
0.0 0.5 1

otstrap
nd �c�
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Resolution and uncertainty in 1D CSEM F161
nomaly in the deeper thin layer,5 so the layers obviously are thick
nough to break the symmetry modestly. Second, the particular data
sed for the truth case produced a MAPsolution m̂��0.9,2.3�, so the
ecentered bootstrap samples consequently are more concentrated in
his region. The weak preference for the deep layer in the Monte Car-
o experiment is of no great significance, but once the recentered
ootstrap has been fired off with a MAP solution in a particular part
f parameter space, bootstrap realizations clearly will be more
harply concentrated in that region than is desirable.

The non-recentered bootstrap output is shown in Figure 6. Here
here is a much better symmetry in where the anomaly is placed, but
moother models m2 �m3 are under-represented. This under-repre-
entation is caused by the modestly low probability of drawing mod-
ls from the prior distribution close to this “knee” point in the maxi-
um-likelihood surface because the MAP solution found by the

ootstrap will be, roughly speaking, the closest point on the maxi-
um-likelihood surface to the sample prior-mean for the realization.
igure 7 shows the comparable output using MCMC �with heavily
ecimated sampling output�, showing heavier support in the corners
f the distribution and for smoother models.

For strongly nonlinear models, empirical distributions produced
y bootstrapping cannot be expected to yield the same results as pro-
edures that correctly sample from the Bayesian posterior, such as
CMC. The theory is strong for the linear case, but the validity of

he bootstrap procedure depends on being in an asymptotic regime
ith a large data-to-parameters ratio and a very focused �compact�

ikelihood, which means the linear approximation is respectably val-
d over the support of the posterior. The first example above repre-
ents a case where acquiring more data will not focus the posterior
etter; the model is intrinsically unresolvable,
nd only the uncertainty of the “effective medi-
m” formed by m1 and m2 is reduced with more
ata.

Our recommendation at present is that the
nonrecentered” bootstrap be used, as it seems
ess likely to miss significant probability mass
way from the mode belonging to the MAP solu-
ion m̂ used as the basis for the bootstrap. Be-
ause, in the CSEM case at present, the prior
eans nearly always are less than the MAP val-

es, any biases are likely to reduce inferred resis-
ivity values, which is a conservative tendency.

It is fairly likely that adapted bootstrap tech-
iques exist for multimodal target distributions,
nd that a good resampling scheme for multivari-
te Gaussian mixtures can be constructed. This
equires further research.

EXAMPLE PROBLEMS

hickness wedge model

Here we invert a known truth-case model, con-
tructed as a resistive wedge buried 1 km deep in
hale, in 1 km of seawater, and extending from
0 to 450 m in thickness; see Figure 8a. The
edge is presumed to be very gradual, so the 1D

ssumption is not violated; the wedge geometry is

5The bootstrap modes are very well-separated, focused clusters at �m2,m3�
ear either of these values.
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hosen specifically to illustrate resolution aspects. The underburden
s also shale. The shale background is 1 �m, reservoir 100 �m, and
he data set is inline �E� measurements at frequencies f

.25,.5,.75,1,1.25,1.5,2 Hz, for offsets at 1 km to 15 km, on 500
m spacings. Noise levels are taken as 5%, with a noise floor of
.10�16 V /Am2.

Figure 8b and c show MAP inversion images produced using
ayesian smoothing on two grids: a regular 50-m grid, and a loga-

ithmic grid �layer thicknesses increasing geometrically with depth�.
oth styles fit the data satisfactorily, so the inferred image largely is
function of the grid construction. Figure 8d is a plot of the MAP in-
erted reservoir thickness and resistivity-thickness product �RTP�,
ith error bars, based on a parametric study of a three-layer model,

s follows. For low-dimensional models, the marginal model likeli-
ood �MML� is a useful tool for examining model uncertainty in-
olving depth and thickness of certain target layers. The code can be
sed to generate a model-study suite of inversions over a user-speci-
ed range of specified layer thicknesses in an arbitrary hypercube.
he MAP model belonging to the maximum MML model chosen

rom this suite of models is what we describe as a “MML-based in-
ersion.” The MML outputs from this model study are used to con-
truct thickness and depth uncertainties for target layers. Discrete
ummations of the model probabilities ��e�MML� over thicknesses/
arameters not of interest are used to construct approximate margin-
l distributions for parameters of interest. Figure 8d is such an inver-
ion result for the wedge model, using a parametric model study of
he reservoir layer top-depth and thickness.

Figure 9 shows how the MML varies as the depth and thickness of
single-layer reservoir vary at location CMP 5, where the truth-case

.5� and �2.5, 0.4�, so we can expect that, for any data set, the MAPmodel m̂ is
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odel was 135 m thick �1000 m deep�. Thicker models have a slight
endency to image shallower. Though we do not show the details in
he interests of brevity, under the Monte Carlo experiment of resam-
ling the synthetic data and reconstructing the marginals each time
ia the parametric model study, the MAP estimate of depth and
hickness can be shown to have low bias.
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igure 8. �a� Truth-case wedge model: 100 �m reservoir over 1 �m
regular 50-m grid. �c� MAPinversion image using Bayesian smooth

hickness and resistivity, showing marginal-distribution 95% error-b
s much better identified by the data than thicknesses or resistivities.
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ird model

This case is a surrogate for some field data, with subsurface target
rofiles approximating that of interest, and field data generated syn-
hetically by adding independent Gaussian deviates to the truth-case
ata. The data sampling inherits some uneven spacing from the CMP
rocessing on actual field data and the somewhat arbitrary extension
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ackground. �b� MAP inversion image using Bayesian smoothing on
a logarithmic grid. �d� MML-based three-layer inversions for depth,
thickness, and resistivity-thickness product �RTP�. Clearly the RTP
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f the 0.75 Hz and data near the noise floor. Here the error bars are
% of �E�, thresholded at 2.10�16 V /Am2. There are frequencies
.25, 0.75, and 1.25 Hz, and the data is �E� inline, from 1.2–12 km.
he “true” model, data, and two styles of inversion are shown in Fig-
re 10. Inversions have been run with Bayesian-smoothing and
ayesian model-selection styles, and both have similar “opinions”
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ruth-case model values from which the data were generated, and als
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n the achievable resolution, and detect the two main anomalous �re-
istive� layers aside from basement. Some variation in the thickness
f the final “GAP” lower-resistivity segment is observed �see Figure
0�, but parametric variation of this thickness shows that it is very
oorly resolved by the data �the MML shows support over about
km of thickness�.
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To examine inversion uncertainty, an unsmoothed inversion
ased on a p�18 layer logarithmic grid was run, with model priors
et at N�0,1�, and noise-variance � n an additional unknown. This in-
ersion has modest uncertainty about which layer to place the two
nomalies in, and the marginal posterior distributions in the anoma-
ous layers clearly are multimodal. A typical example is shown in
igure 11.
This model is an interesting comparative test case for the posterior

ampling techniques. We generate large bootstrap and MCMC en-
embles and compute from these samples the P16, P50 and P84
uantiles �mean�one std deviation for Gaussian deviates� of each
ayer parameter mi. These quantiles and the truth-case model for
oth styles of calculation are shown in Figure 12. Neither method
eems statistically anomalous in terms of mispredicting the actual
odel, but in general the bootstrapping interval estimates are a little
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ertainty. Cross-scatterplots of bootstrap sample
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r anomaly lies. Inset: Grayscale model depictions
f the model parameters in depth, for 100 “realiza-
ions” from the posterior using bootstrapping. In
hese samples, the anomaly prefers to reside solely
n one of two or three layers over a “background.”

3

2

1

0

0 10

lo
g

(r
ho

[o
hm

-m
] )

10

a)igure 12. Bird model marginal model-interval es-
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uantiles computed from a bootstrap ensemble of
000 models. “True” model shown in thick light
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ider, as suspected from the simple calculation for the split canoni-
al model. Either method is very much preferable to linearized error
nalysis �using local mode Hessians�; these are not shown. The
CMC calculation is at least 10 times the expense of the bootstrap-

ing run in this case, as slow mixing is a controlling factor. The cor-
elation test procedures of Raftery and Lewis �1996� have been used
o estimate the adequacy of the final ensemble. The tendency of
ootstrapping to undersample the smoother models makes certain
imodal distributions more accentuated, and hence some of the P50
uantiles are more volatile.

Another test of the sanity of the sampling procedures is statistical
lots of the sample-log �posterior� distribution, relative to what
ight be expected from linear theory. From equation B-7, Appendix
, we expect the sampling distribution to “resemble” an offset � p

2

istribution if the model were nearly linear. For the nonlinear case all
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Resolution and uncertainty in 1D CSEM F165
ets are off, but we should expect a modest concurrence, and in par-
icular we should expect an alternative scheme to MCMC to agree
losely on this issue. See Figure 13.

One can conclude from this exercise that both sampling methods
re good at generating plausible models �i.e., all fit the data within
he “expected” variation�, but the bootstrap models are more widely
ariable, i.e., tend to concentrate an undue fraction of the resistive
nomaly in single layers. The bootstrap technique is very good at
enerating independent samples; even given the price of optimiza-
ion for each sample, the overall optimization cost �say O�100� for-
ard runs with sensitivity� still is less than the cost of progressing to
decorrelated state in the MCMC chain. However, the bootstrap

oes not visit the more remote portions of the posterior as well as
CMC and is overall a mildly biased sampler for this seriously non-

inear problem.

SOFTWARE

The open-source DeliveryCSEM code implementing these ideas
s a companion software to the Delivery software used for seismic
VO inversion �Gunning and Glinsky, 2004�. It is released under a
eneral Public License-style license into the public domain and can
e obtained at the Commonwealth Scientific and Research Organi-
ation �CSIRO� web site �Gunning, 2003�. The bulk of the code is
ava, but uses the public domain Scripps forward engines in FOR-
RAN �Dipole1D �Key, 2009�, also seafloor.f and dependencies

Constable et al., 1987�� called through the Java Native Interface.
est examples and usage documents, etc., are at the web site.

CONCLUSIONS

We have presented two Bayesian approaches to resolution infer-
nce and uncertainty in CSEM inversion problems. Resolution can
e inferred by either hierarchical models with free parameters for
orrelation lengths �Bayesian smoothing�, or model-choice frame-
orks applied to variable resolution spatial models �Bayesian split-

ing/merging�. Globalized optimization with bound constraints is an
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igure 13. Bird model, posterior distribution of the -log�posterior�
istribution �total prior and data misfit�. Difference from the theoret-
cal linear curve is a result of the nonlinearity, but MCMC and para-

etric bootstrapping generate comparable results.
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ssential workhorse for either method. The smoothing methods tend
o be faster, but the final models are not as parsimonious. Both meth-
ds offer a coherent alternative to regularization approaches, with
ore explicit control of the prior distribution, and a more intimate

elationship to the large statistical literature on model inference us-
ng maximum likelihood or empirical Bayes methods.

Local linearization approaches to model uncertainty based on co-
ariance matrices at modes are of very limited use and usually
hronically underestimate uncertainty for models with multimodal
r heavily skewed posterior marginal distributions. A reasonably ef-
cient technique based on a Bayesianized version of the parametric
ootstrap is much better, but likely to modestly overestimate uncer-
ainties. Full MCMC sampling is possible for these problems but
ery expensive compared to either of the preceding techniques.

Software for performing these inversions is made available under
n open-source license agreement, with reference implementations
f all the main ideas described in this paper.
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APPENDIX A

ALGORITHMS FOR FINDING MODE
CONNECTIONS

One possible approach to finding a locally minimum path for the
ntegral �equation 11� is by discretizing the integral using some
uadrature scheme. In the following examples, neither free-noise
or smoothing is used, so it is sufficient to use the objective �with Cp

iagonal�

�2 log���m�d��
� 2� �d�F�m��TCd
�1�d�F�m��

� �m�mp�TCp
�1�m�mp� .

very simple “midpoint” Euler scheme for equation 11 is

�AB� �
i�0

i�N�1
� 2�Mi��� 2�Mi�1�

2
	Mi�1�Mi	, �A-1�

here M0�MA, MN�1�MB, and M1,M2, . . . ,MN are path “nodes”
airly evenly distributed along the path connecting A and B. We then
inimize the sum for the joint parameters M� �M1,M2, . . . ,MN�

sing standard optimization techniques. Start with an initial configu-
ation of points Mi evenly distributed along the straight line connect-
ngAand B. Efficient optimization will require, at least, �M�AB. Be-
ause the gradient �Mi

� 2 at the ith path-node already is coded and
vailable, the bulk of the work is done. For completeness, the full
oint gradient, in components, is

���AB�ij� �
i�1

N

���
2 �Mi�� j�
Mi�
Mi�1���

i�1

N�1

�� 2�Mi�1�

�� 2�Mi��
Mij�Mi�1,j


Mi�1
� �

i�0

N

�� 2�Mi�1�
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�� 2�Mi��
Mi�1,j�Mi,j


Mi
. �A-2�

ere, 
Mi� 	Mi�1�Mi	 is the forward-difference path-segment
ength. With function and gradient now readily computable, the opti-

ization now can proceed using standard efficient methods. At
resent, we use a Broyden-Fletcher-Goldfarb-Shanno �BFGS�
variable metric� scheme �Nocedal and Wright, 1999�, based on un-
onstrained minimization �UNCMIN� �Schnabel et al., 1982; Ver-
ill, 2005�. A simple example with known degeneracy is shown in
igure A-1. It is helpful to introduce apparatus to ensure the node
oints in the discrete approximation to the path-integral remain eq-
ispaced. We define the segment lengths 
Mi� 	Mi�1�Mi	, the
ean segment length

m̄S�
1

N�1 �
i�0

N

	
Mi	,

nd the additional penalty term to �AB

�AB
* �A�

i�0

N

�	Mi�1�Mi	� m̄S�2,

hose gradient has components

���AB
* �ij�2A��Mij�Mi�1,j��1� m̄S/
Mi�

� �Mi�1,j�Mi,j��1� m̄S/
Mi�1�� .

A is chosen as a suitable scaling constant �e.g., A� �N
1�2 / 	MA�MB	2�. Local minimization of �AB��

AB
* then will

enerate the maximum probability local path, with equispaced
oints. Note that because �

AB
* penalizes only the “segment-length

ariance,” it should not compete with the principal term we wish to
inimize.

It is possible to formulate the problem using Euler-Lagrange
quations for the minimum path, which could be solved by, e.g.,
hooting. Experiments with the BFGS implementation scheme
bove indicate that the number of outer iterations required to stabi-
ize �around 50� is likely to be comparable to the number of forward
hoots likely to be needed in any Newton-like shooting scheme. A
unge-Kutta or similar scheme for the latter is likely to require about

he same amount of work �e.g., a function and a gradient evaluated
bout every m̄S in space�, so overall, the computational costs of the
wo ideas are probable comparable.
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MORE COMPLEX EXAMPLE

Here we consider an 18-layer logarithmic-gridded model with n
138 data for inline �E�. The code is run in naive style, with no

etasmoothing or noise parameters, so M�m. Multistart optimi-
ation is enabled, using layer-flipping, and the code ends up collect-
ng eight modes. Figure A-2 shows a scatterplot of the path linking

odes 1 and 3, for layers 4, 5, 6, 12, 13, 14. The inset “morph” figure
hows how the model evolves from model 1 into model 3 along the
ath. The layers chosen for the scatterplot are those undergoing sig-
ificant changes.

A question of great importance is whether the modes are “statisti-
ally interconnected” at the level of noise specified by the inversion.

rough guess at this can be inferred by assigning the most likely
ode MAP point as the offset in an offset � p

2 distribution �see the re-
ression discussion in Appendix B, and equation B-7�. Random
amples from the posterior should spread out with � 2 values no high-
r than the support of the offset � p

2 distribution. If this latter comfort-
bly covers the probability barriers separating modes, then we might
ay the modes are “statistically connectable.” The modes found in
his example easily satisfy this condition, as shown in Figure A-3.

It is important to point out that these “connecting links” are not
rivial entities in general. They do not arise in the general case from
traight-line interpolation of mode points in either �transformed�
og��� space or the untransformed space of resistivities. Such
traight-line trajectories usually encounter enormous probability
arriers caused by serious data misfits.

APPENDIX B

CLASSICAL REGRESSION RESULTS,
BOOTSTRAP, AND BAYESIANIZED BOOTSTRAP

Here we wish to motivate the Bayesian parametric bootstrap by
evisiting some known results from classical linear regression and
ootstrap theory.

Suppose that, in truth, the n data are generated by a linear model
n p parameters

yu�Xu .m�� u

here Xu is n� p, the noise � u �N�0,Cd�, and usually Cd is a diago-
al matrix of noise variances. The suffix u denotes “unscaled” vari-
bles. The least-squares estimate of m is

ng path)

5 30 35

tion

Figure A-1. Evolution of “mode-linking” path un-
der optimization, for the simple experiment of the
“split-canonical model,” where the 100-m resistive
layer �buried 1 km deep� of the canonical model is
replaced by two 50-m layers �parameters m2,m3�.
Two modes can be found by the “layer-flipping”
strategy of the global optimizer, corresponding
�roughly� to placing the resistive anomaly in each
thin layer solely. �a� The log10��� parameters of
each are plotted as the path evolves. The optimal
path is close to that describing a conserved resistiv-
ity times thickness sum over the two layers. �b� � 2

cross-sections of the posterior surface as the opti-
mal path evolves. Clearly the early paths are ex-
tremely improbable ways to connect models.
dex alo

20 2

Evolu
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m̂� �Xu
TCd

�1Xu��1Xu
TCd

�1yu,

rom which the “predicted” data are

ŷu�Xu . m̂�Xu�Xu
TCd

�1Xu��1Xu
TCd

�1yu.

For the algebra that follows, it is most simple to think in terms of
caled data y
Cd

�1/2yu, a scaled design matrix X
Cd
�1/2Xu, and

tandard normal noise � 
Cd
�1/2� u �N�0,I�, in terms of which the

ormulas read

m̂� �XTX��1XTy,

ŷ�X�XTX��1XTy .

Here, the overall coefficient matrix Q�X�XTX��1XT is known as
“hat” matrix �it “puts the hat” on y�. Q has some important proper-

ies. It is symmetric and idempotent because Q2�Q, so has eigen-
alues 1 or 0, and has the same rank as X, i.e., possessing p eigenval-
es 1, the remainder 0. It therefore follows that
ank�I�Q��n�p, which is of use in the below.Another standard
esult we need is that if z�N�0,I�, and A is a fixed symmetric idem-
otent matrix of rank k, then zTAz is distributed as � k

2, which has
ean k.

We are interested in the normalized residuals

e�Cd
�1/2�yu� ŷu��y� ŷ� �I�Q�y . �B-1�

These have expectation �e��0 if the model is true �because �I
Q� X�0�. Another important quantity is the residual-sum-of

quares � RSS
2 �eTe, with expectation

�� RSS
2 �� �eTe�� �yT�I�Q�T�I�Q�y�

� �� T�I�Q�� ��n�p �B-2�

fter a few lines of algebra. Clearly, � RSS
2 is distributed as � 2 with n
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igure A-3. Plots of the -ve log-posterior �omitting constant terms�
long the 8�7 /2�28 possible links among eight different modes,
long the minimum integral path. On the left is a profile of the associ-
ted approximate offset �� p

2 sampling distribution attached to the
ost likely mode.All these interconnecting paths appear reasonably

ccessible to the sampler. Note that an �20% correction to the noise
evel has been used to adjust the vertical scale.
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p degrees of freedom. It follows, in connection with the “discrep-
ncy” principle used in the Occam style inversions, that if the noise
stimates are correct and Gaussian, the “target value” of � RMS

2

�eTe /n ought to be

� RMS
2 ���n�p�/n, �B-3�

hich might be, typically, about 0.9. See also the discussions in
ansen �1998�. Roughly, this means we expect the regression to fit
ithin n�p “standard predictive errors.” �Hansen has also a discus-

ion of how setting � RMS
2 →0�1 tends to produce oversmoothing.�

n the thought-experiment of making a very rich model with p→n,
e get � RMS

2 →0, which is a standard symptom of complete overfit-
ing.

BOOTSTRAP

A synthetic bootstrap data set for the linear problem then can be
ampled as

yu,i�Xum̂�� u,i,

r equivalently

yi�Xm̂�� i.

he LS bootstrap model m̂i estimated from this sample then is

m̂i� �XTX��1XTyi� m̂� �XTX��1X� i,

hich obviously is unbiased ��m̂i�� � m̂�. The predictive accuracy
f this sample model with respect to the original data set is of inter-
st. Consider the predictive residuals

ei�y�Xm̂i� �I�Q�y�Q� i. �B-4�

There are two kinds of ensemble distributions of interest:

� The distribution of ei formed by sampling over the data set y
and the bootstrap variables � i, which will denote with y,� sub-
scripts. Because these are distinct spaces, it then is trivial to
show that �ei�y,� �0 and that the bootstrap prediction residual
sum of squares ei

Tei�
y,�

� n
2 i.e., �ei

Tei�y,� �n.

� The distribution of ei
T .ei formed over the bootstrap samples

only, i.e., for a given, fixed y. This is what is handled in practice,
and identical to the negative log-posterior term in a MCMC ap-
proach. We use the eigendecomposition Q�VTIpV, where V is
orthogonal, Ip is a diagonal matrix of p leading ones, and so

ei� �I�Q�y�Q� i�VT��I� Ip�Vy� IpV� i�

�VT��I� Ip�Vy� Ip� i�� . �B-5�

where � i�
V� i also is N�0,I� �i.e., standard normal�. Thus

ei
T .ei� 	�I� Ip�Vy� Ip� i�	2� 	�I� Ip�Vy	2��

i

p

� i�
2,

�	y�X . m̂	2��
i

p

� i�
2, �B-6�

or
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ei
T .ei� 	y�X . m̂	2�

�
� p

2, �B-7�

i.e., the sampling distribution of the data misfit ei
T .ei is � p

2, but
offset to the right by the minimum misfit found in the regres-
sion. Roughly speaking, we then expect the bootstrap “sam-
ples” of the model to generate an original-data misfit distribu-
tion � i

2 whose mean is offset by p to the right of the “best fit” � 2

in the regression.

In classical and empirical Bayes methods, the noise level �if un-
ertain, as is usually the case� would be estimated such that 	y

X . m̂	2�n�p, so the mean of the data misfit ei
T .ei under both

inds of ensemble averages is n.

BOOTSTRAP FOR BAYESIAN FRAMEWORKS

For ill-conditioned problems with regularization modifications,
r in Bayesian frameworks, the data-misfit objective function �log-
osterior� above is modified with terms containing “prior” beliefs
bout the model mean m̄. Typically, for a nonhierarchical model,
ith a Gaussian prior m�N�m̄,Cp�, and Gaussian likelihood, we
ave

� 2� �y� f�m��TCd
�1��y� f�m���� �m� m̄�Cp

�1�m� m̄� .

�B-8�

he extra term can be interpreted as “extra” data points �e.g., section
.9 of Gelman et al. �1995�� as follows. Form a new data vector Y

�y,m̄�, with observational model F� � f�m�,m� and augmented
oise covariance

Cd�Cd 0

0 Cp
� .

he log–posterior then can be written as

� 2� �Y �F�m��TCd
�1�Y �F�m��,

nd the local linearization of the forward model F at any point will
roduce a Jacobian that looks like

Xu�J

I
� .

Thus we can use the known results from the previous section for
aximum likelihood theory, with a total of n�p data points, and an

ugmented-data vector to consider for the residuals.
The upshot is that the “prior mean” used in each bootstrap optimi-

ation must be a sample from the prior distribution, centered on the
AP estimate using the real data, just as the real data are resampled
ith errors N�0,Cd� and centered on the MAP estimate f�m̂�. For ex-

mple, suppose a MAP estimate minimizing equation B-8
s m̂. A bootstrap sample then will be Yi 
� f�m̂��� i,m̄i�, with � i

N�0,Cd�, m̄i �N�m̂,Cp�. For the linear case F�m��Xum, the
roofs are trivial:
Downloaded 16 Nov 2010 to 130.116.144.125. Redistribution subject to
m̂
�XTCd
�1X�Cp

�1��1�XTCd
�1y�Cp

�1m̄� �B-9�

Yi� �yi,m̄i�� �X . m̂�� i,m̄i� samples �B-10�

m̂i� �XTCd
�1X�Cp

�1��1�XTCd
�1yi

�Cp
�1m̄i� MAP estimates

�m̂i�� �XTCd
�1X�Cp

�1��1�XTCd
�1Xm̂�Cp

�1m̂�

� m̂ �B-11�

Cov�m̂i�� ��m̂i� m̂��m̂i� m̂�T�

� �XTCd
�1X�Cp

�1��1. �B-12�

The implications of this framework for the residual sum-of-
quares now can be trivially inferred taking into account that there
re n�p “data” points and p parameters. Specifically, for the best-fit
MAP� model, we expect

� data�prior
2 � ��y� f�m��TCd

�1��y� f�m���� �m

� m̄�Cp
�1�m� m̄��� �n�p��p�n,

nd for bootstrap samples,

� data�prior
2 � �y� f�m��TCd

�1��y� f�m���� �m

� m̄�Cp
�1�m� m̄� � � n�p

2 .

In summary, the implied suggested recipe for the nonlinear CSEM
roblem, which we call the recentered Bayesian bootstrap, is �1� in-
ert with the true data and actual prior N�m̄,Cp� to get the MAP mod-
l m̂, �2� resample with Gaussian noise of correct variance added to
he synthetic data produced by the MAP model m̂, and use a Baye-
ian prior sampled from the centered Gaussian N�m̂,Cp� when in-
erting for the bootstrap samples.

We will see below that recentering the mean of the prior has strong
mplications for multimodal models. At the risk of incurring some
ias, we also will use the nonrecentered Bayesian bootstrap, which is
he same recipe above except that the prior samples are drawn from
he original mean N�m̄,Cp�. The reasons this more defensive strategy
s useful will become clear in the simple examples below.

SIMPLE EXAMPLES

1�Analytical toy substitute for underresolved layers
Consider the nonlinear “degenerate sum-resistivity” two-parame-

er problem with n�1 data point y, and predictive model y�10m1

10m2, measurement error � �N�0,� 2�, and Gaussian prior m
N�0,I�H�m1�H�m2�. �H�x� is the Heaviside function, H�x��1, x
0, 0 otherwise.� The model thus is confined to positive mi.
The Bayesian posterior is of form

��m1,m2�y� � exp�� �10m1�10m2�y�2/2� 2�

�exp�� �m1
2�m2

2�/2�H�m1�H�m2� .

For example, with y�20, � �1.0, the posterior is focused on an
rc, and Figure B-1 shows both samples and an empirical marginal
robability density function �PDF� of m1 obtained using quadra-
ures. For comparison, the marginal distribution obtained using the
on-recentered parametric bootstrapping algorithm suggested
 SEG license or copyright; see Terms of Use at http://segdl.org/
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bove is shown. Specifically, the latter is: sample m̄i

N�0,I�H�m1�H�m2� and error � i �N�0,� 2�, then estimate boot-
trap samples mi,1,mi,2 by numerically minimizing

� i
2� �10m1�10m2� �y�� i��2/2� 2� ��m1� m̄i,1�2� �m2

� m̄i,2�2�/2, m1,m2�0.

Notice how the marginal distribution is distorted subtly, but is in
eneral a reasonable approximation, especially because n�1 and
ootstrapping has origins as an asymptotic technique for large n �but
emember that adding more data does not cure model-degeneracy
temming from the physics�. The most obvious effect is the lower in-
idence of “smooth” solutions m1,m2 �1 compared to the true poste-
ior: Speculatively, this might widen interval estimates when we ap-
ly parametric bootstrapping to underresolved CSEM models. In
his case, the recentered bootstrap will grossly underrepresent the
requency of large m1 values.
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