
Electronic Appendices: to appear as supplementary material on jour-

nal archive

Appendix 1: Bayesian update formulas for approximate multi-Gaussian

posteriors including the noise parameters

The standard linear model with a Jeffreys prior on a single noise parameter has

a simple analytical posterior featuring a (right skewed) Inv–χ2 marginal distri-

bution for the noise (Gelman et al., 1995, section 8.9). Although this posterior

is not strictly integrable to obtain a marginal model likelihood, a Gaussian

approximation at the MAP point will be. When there are multiple noise pa-

rameters and some parts of the likelihood are not scaled by the unknown noise,

the posterior is somewhat messier. The amount of data commonly available

in well–tie problems is usually sufficient to make the posterior distribution of

the noise components fairly compact, so will develop the relevant formulae on

the assumption that a full multi–Gaussian form for the joint model and noise

parameters is adequate.

Since the noise posteriors are usually right skewed, it is sensible to work in

terms of the joint model vector M = {m,m(n)} where m(n) is defined as

m
(n)
j = log(σstack j), the noise level for stack j. The non–noise components

m are formed from the wavelet components aw (and coupling parameters for

the coupled near/far wavelet mode of operation), time to depth map knots τ ,

positioning and registration errors ∆rR and AVO scale term B respectively:

m ≡ {aw, τ ,∆rR, B}.

We assert a Gaussian prior for M of form P (M) = N(M̄, CM), where CM =

diag{Cp, C
(n)
p } and the C(n)

p entries for noise components m(n) are very weak

(we choose the mean to be about the log of the signal RMS, and the standard

deviation large on the log scale), and absorb (for computational convenience)

the Jeffrey’s noise prior and wavelet peak/phase prior terms into the collected

likelihood

L(y|M) =
PJeffreys(m

(n))

|CD(m(n))|1/2
exp(−(y − f(m))T CD(m(n))−1(y − f(m))/2).
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This likelihood collects all non–Gaussian terms in (7), so y is an ’equivalent

data’ vector, formed by the concatenation of the seismic data for all wells

and stacks, sonic–log derived interval velocities, and (from the prior) desired

phase/timing characteristics of the wavelet. Similarly f(m) is the concate-

nation of the synthetic seismics, model–derived interval velocities, and the

wavelet–phase/timing measures. Only that part of CD(m(n)) pertaining to the

seismic mismatch depends on m(n). Note that CD is diagonal, with exp(2m
(n)
j )

terms for the seismic mismatch on stack j, σ2
Vint terms for the interval veloci-

ties, and σ2
phase, σ

2
peak–arrival terms for the wavelet phase/timing.

Under the logarithmic change of variables, the Jacobean and coefficient of the

above equation conspire to yield the log-likelihood

− log(L(y|M)) = eT .m(n) +
1

2
(y − f(m))T CD(m(n))−1(y − f(m)).

where ej = Nstack j, the number of seismic mismatch data points for stack j.

If all terms in the log–likelihood and prior are expanded to quadratic order

in {m,m(n)} around some current guess M0 = {m0,m
(n)
0 } and collected, the

resulting quadratic form corresponds to a posterior Gaussian distribution for

M which may be solved using the following expressions:

∆ỹi =
yi − fi(m0)

C
1/2
D,ii

(9)

X̃ij =
fi(m0 + δmj) − fi(m0)

δmjC
1/2
D,ii

(sensitivity matrix from finite diffs.) (10)

Q̂i,j =−2δI(i),j∆ỹj (Nstacks× dim(y) matrix) (11)

P̃ij = 2
∑

k

(∆ỹk)
2δI(k),iδI(k),j (Nstacks × Nstacks matrix) (12)

where I(i) is an indicator variable that is the index of the stack–noise param-

eter in m(n) that applies to component i in the ’data’ vector y. It is zero for

non seismic–mismatch components.

With these definitions, the linear system for the model update ∆M is









C−1
p + X̃T X̃ −X̃T Q̂T

−Q̂X̃ C(n)
p + P̃









·









∆m

∆m(n)









=









C−1
P (m̄ − m0) + X̃T ∆ỹ

−e − C(n)−1
p (m

(n)
0 − m̄(n)) − 1

2
Q̂∆ỹ








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(13)

The update then has mean M̄ ′ = M0 + ∆M and a covariance C̃ which is the

inverse of the coefficient matrix in (13):

C̃ ≡









C−1
p + X̃T X̃ −X̃T Q̂T

−Q̂X̃ C(n)
p + P̃









−1

. (14)

These update formula form the basis of a Newton scheme for finding the maxi-

mum aposteriori point for a particular model with wavelet vector aw. The RHS

of (13) is effectively a gradient of the posterior density, so the updates vanish

when the mode is reached. The actual implementation is a typical Gauss–

Newton scheme with line searches in the Newton direction and additional

step-length limits applied for big Newton steps. Laplace estimates based on

the determinate of the final C̃ are used in forming the marginal model likeli-

hood.

Appendix 2: Data input forms

The data needed to perform the wavelet extraction should be in the following

forms

• Configuration file. For a particular extraction, the configuration is defined by

an XML file which sets up all necessary parameter choices and file names. It

is controlled by a schema file (XSD), so configuration is simple with the BHP

XML schema-driven editor supplied with the distribution. The schema is

located at au/csiro/JamesGunning/waveletextraction/xsd/ relative to

the root of the distribution, and the editor at scripts/xmledit.sh. Certain

self–documenting (SU style) runtime flags are able to modify the behavior

at execution for frequently chosen options. We recommend users read the

self docs carefully and follow the examples.

• Seismic data as a ’mini–cube’, for each well, in big–endian SU format. Inline,

crossline and gx,gy (group coordinate) header fields need to be correctly set.

The cube should be big enough to safely enclose each well on the desired

extraction time interval, but not so large as to swamp memory (10x10 cubes

are typically fine for straight holes). If x,y headers are not available, a triplet
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of non–collinear points can be specified in the XML file which enables the

code to map inline,crossline to x,y. Single line or trace seismic files are also

acceptable, provided suitable flags are set in the XML.

• Log data is read in ascii, either standard ascii LAS files or the geoEAS

format used by GSLIB (Deutsch and Journal, 1998). The critical depth to

be specified in these files is measured depth (MD) along the well trajectory.

There must be density and DT (slowness) fields for the sonic p–wave and

shear logs. A rudimentary commandline switch (--fake-Vs) will concoct a

placeholder shear log from the p–wave log if shear is not available, which is

useful for near–normal incidence extractions.

• UTM files with the well trajectories. These are geoEAS files, which must

have x, y, MD and TVD columns. Kelly bushing data will be required to

convert to true depth TVD.

• Checkshot data. Again, geoEAS format. We require MD, T, sigma T columns.

• Markers (optional): geoEAS format also, with MD, T, sigma T columns.

A note on units: the code performs automatic time units detection for time

data, which is expected to be input in either s or ms. All density (mass)

units cancel internally. Equation (2) involves a velocity ratio from log data to

stacking–velocity Vst (see eqn (3)), and the code will again attempt to auto–

detect a feet vs meters difference here (logs are commonly in µS/ft, Vst may

be in m/s). Another velocity ratio occurs in (3.1.2); again, auto–detection is

performed, since Vint(τ ) is derived from a checkshot that may be imperial or

metric. The auto–detection code is based on the assumption fact that velocities

will be specified in m/s or ft/s, and that sonic logs will be in µS/ft or (very

unusually) metric.

Users are recommended to look at the examples in the distribution closely

when setting up their own problems.

Appendix 3: Outputs

A variety of outputs are generated by the code. Many of these are selectable

by commandline switches (the code self–documents like SU codes). All SU

outputs are big–endian. In roughly diminishing order of importance, these are

• ASCII dumps of the cross-registered logs, observed and synthetic seismic, for
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each well and wavelet span (typically MLgraphing-file.*). Used as direct

input for the ExtractionViewer module.

• Maximum likelihood (ML) wavelet, SU format, for each wavelet span, and

overall (MLwavelet.*.su).

• ASCII files of the most likely parameter values and uncertainties (diagonal

entries of the posterior covariance matrix), for each wavelet span, and overall

(MLparameters.*.txt).

• Multiple realizations of the wavelets from the posterior, also SU format

(wavelet realisations.su).

• Maximum likelihood 5–trace seismic sets along the well trajectory, for the

five quantities {observed–seismic, synthetic seismic, reflectivity, x, y}, again,

for each wavelet span, and overall (MLsynth plus true seis.*.su) . These

are very useful for third party software applications.

• ASCII files for the most likely time-to–depth map, for each well, for each

wavelet span, and overall (MLtime-to-depth-map.*.txt)

• ASCII files of the most likely wavelet phase spectrum, for each wavelet span,

and overall (MLwavelet-phase-spectrum*).

• ASCII dumps of the well log blocking (* blocked.txt).

• ASCII dumps of negative log–posterior cross-sections of the posterior sur-

face, shown as slices for each model parameter (posteriorXsection*.txt).

These are useful for checking for possible multimodality, or serious non–

linearity.

Appendix 4: Issues in positional uncertainty modeling

When using the extraction model with general positioning/registration param-

eters, this amounts to using a generalized non–linear regression of form

Sobs(m) = r(m) ∗ w(m) + en,

where some parameters in m determine (by continuous interpolation) the local

trace data Sobs(m) to be used in the wavelet extraction.

In this kind of model, one has to be wary of the optimization ’latching’ on to a

particularly favorable location parameter which is controlled merely by chance

rather than a genuinely better fit to the regression model. A better insight into
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this problem may be obtained by examining a simplified discrete ’choose–the–

data–set’ problem, in which spatial fluctuations in y are mimicked by a choice

of one of two data sets y1 or y2, and the ’choice’ parameter is controlled by the

Bayes factors at the maximum likelihood point. We can then examine how the

expected fluctuations in the Bayes factor affect the uncertainty in the ’choice’

parameter by Monte–Carlo methods.

A canonical linear regression model for a specific data set y would be

y = X.m + en

where X is the design matrix and en ∼ N(0, σ2) is the noise. The standard

likelihood is

− log(L(d|m)) ∼ (y − X.m)T (y − X.m)/2σ2 + n log(σ)

A Jeffrey’s prior for the noise variance σ2, coupled with an independent Gaus-

sian N(0, Σm) for the coefficients leads to an improper posterior marginal prob-

ability for the model (Gelman et al., 1995), so we use a class of conjugate priors

– Zellners’ g-priors (Zellner, 1986) – which leads to simple analytic forms for

the posterior. These priors take the form

p(σ2)∼ 1/σ2 (15)

p(m|σ2) = N(0, gσ2(XT X)−1) (16)

where g is a single hyper-parameter. For the linear model, the posterior marginal

probability has the simple form

Π =
∫

(L(d|m)p(m|σ2)p(σ2)dmdσ2 ∼ (1 + g)(n−k−1)/2(1 + g(1 − R2))−(n−1)/2

where there are n data points, k parameters in m, and R2 is the usual coefficient

of determination. The Bayes factor for two identical models fitted to different

data sets (traces) y1 and y2 is then

B12 =

(

(1 + g(1 − R2
1)

(1 + g(1 − R2
2))

)

−(n−1)/2

.

It is instructive to evaluate this quantity for realistic models of the relative

fluctuation in R1 and R2 as we imagine extracting the data sets y1, y2 from
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a trace in a typical near–well region. To illustrate, we have fitted the ’noisy

straight line’ data sets(s)

y(1,2),i = 1 + i/n + qi + ε(1,2),i i = 1, 2 . . . n

for n = 100 data points i = 1, 2 . . . n, with X describing a standard linear

model, q ∼ N(0, 0.252) a fixed (shared) error realization of relative RMS am-

plitude typical for a well–tie, and the two samples y1, y2 distinguished by

the ε(1,2),i term, with the setting ε(1,2),i ∼ N(0, 0.052) emulating small spatial

fluctuations.

Different samples of y are generated by different realisations of ε. We have

used the recommended setting g = n to set the prior covariance g(XTX)−1

to be O(1) (see Zellner (1986) and Clyde 4 for a more extensive discussion of

the role of g). Under this model, the Monte–Carlo distribution of B12 formed

when y1 and y2 are drawn from different realisations of ε (for a fixed, random

q), is illustrated in Fig. 6. Large fluctuations in the Bayes factor associated

with ’position’ (of which ε is the surrogate) are induced by the relatively weak

(5%) additional noise. It is easy to imagine that the deep local minima associ-

ated with these large Bayes factors will also occur in the full nonlinear wavelet

extraction problem, where the ’choice’ parameter is a continuous spatial vari-

ables, rather than a discrete label. If so, it is likely that strongly constrained

positioning parameters (associated with deep local minima in the map of the

Bayes factor as we move around in the near–well region) are not trustworthy.

[Fig. 6 about here.]

In summary, we recommend using the lateral position modeling capabilities of

this package with extreme caution. Particular skepticism ought to be exercised

with respect to the MAP Hessian–derived standard deviations attached to the

positioning parameters.

End of electronic appendices

4 Clyde, M., George, E. I., 2003. Model uncertainty. Statistical and Applied Math-

ematical Sciences Institute Technical Report #2003–16, see www.samsi.info.
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Fig. 6. Variation in Bayes factor due to trace variations of the order of 5% added to
a linear model. Note the logarithmic scale. The wide variations in the Bayes factor
would lead to unjustifiably strong conclusions about the optimal positioning of the
seismic data if their (at least partial) origin in pure chance is not considered.
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