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Abstract

We introduce a new open-source toolkit for the well-tie or wavelet extraction problem of estimating seismic wavelets

from seismic data, time-to-depth information, and well-log suites. The wavelet extraction model is formulated as a

Bayesian inverse problem, and the software will simultaneously estimate wavelet coefficients, other parameters associated

with uncertainty in the time-to-depth mapping, positioning errors in the seismic imaging, and useful amplitude-variation-

with-offset (AVO) related parameters in multi-stack extractions. It is capable of multi-well, multi-stack extractions, and

uses continuous seismic data-cube interpolation to cope with the problem of arbitrary well paths. Velocity constraints in

the form of checkshot data, interpreted markers, and sonic logs are integrated in a natural way.

The Bayesian formulation allows computation of full posterior uncertainties of the model parameters, and the important

problem of the uncertain wavelet span is addressed uses a multi-model posterior developed from Bayesian model selection

theory.

The wavelet extraction tool is distributed as part of the Delivery seismic inversion toolkit. A simple log and seismic

viewing tool is included in the distribution. The code is written in Java, and thus platform independent, but the Seismic

Unix (SU) data model makes the inversion particularly suited to Unix/Linux environments. It is a natural companion piece

of software to Delivery, having the capacity to produce maximum likelihood wavelet and noise estimates, but will also be

of significant utility to practitioners wanting to produce wavelet estimates for other inversion codes or purposes. The

generation of full parameter uncertainties is a crucial function for workers wishing to investigate questions of wavelet

stability before proceeding to more advanced inversion studies.
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1. Introduction

The common procedure of modeling post-stack,
post-migrated seismic data as a simple convolution
of subsurface ‘reflectivity’ with a band-limited
wavelet, and the use of this model as the basis of
various probabilistic inversion algorithms has been
.
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the subject of some very vigorous—and occasionally
heated—debates in the last 20 years or so. It is not
our intention to rehearse the many and diverse
arguments at length in this article: trenchant views
both in support and opposition to this model have
been expressed at length in the literature (see, e.g.,
the series of vigorous exchanges following
Ziolkowski (1991)). Many detractors believe that
this approach places excessive importance on
statistical machinery at the expense of physical
principles; a perfectly reasonable objection in cases
where important experimental or modeling issues
are oversimplified and the statistical analysis is
disproportionately ornate. While these criticisms
can have considerable weight, our view is that
inverse modeling in geophysics must always deal
with uncertainty and noise, and the community
seems to have come to the practical conclusion that
good modeling can dispense with neither solid
physics nor sensible statistics.

There is a perfectly adequate theoretical justifica-
tion for the convolutional model, as long as
absorption and reflections are sufficiently weak,
and the seismic processing preserves amplitudes.
Closely related assumptions must also hold for the
imaging/migration process to be meaningful; these
are usually based on ray-tracing and the Born
approximation. The migrated images will then be
pictures of the true in situ subsurface reflectivity—
albeit bandlimited by an implied filter which
embodies the wavelet we seek to extract. Since
modern inversion/migration methods are closely
related to Bayesian updates for the subsurface
velocity model based on common image gathers
(Tarantola, 1984; Gouveia and Scales, 1998; Jin
et al., 1992; Lambare et al., 1992, 2003), it would be
desirable if well-log data were directly incorporated
into the migration formula. This is not commonly
done, for reasons that may relate primarily to the
segregation of workflows, but also technical diffi-
culties. There remains a practical need for wavelet
extraction tools operating on data produced by the
migration workflow.

Much of the skepticism about convolutional
models has arisen from the observation that
wavelets extracted from well-ties often seen to
vary considerably over the scale of a survey. This
in itself does not seem to us a sufficient argument
to dismiss the model as unserviceable. Firstly, a host
of reasons associated with inadequacies in the
seismic processing may create such effects. For
example, sometimes there is heavy attenuation from
patchy shallow reefs which is imperfectly compen-
sated for. Secondly, it is rarely—if ever—demon-
strated that the difference in wavelets extracted at
different parts of the survey is statistically signifi-
cant. As before, an ideal solution would involve
unifying the imaging problem with the well-tie
problem for each new well, so imaged amplitudes
are automatically constrained to log information.
But until this is commonplace, independent parties
will be responsible for the seismic processing and
well-tie workflows, so the well-tie work has to
proceed with the ‘best case’ processed seismic data
at hand. In this situation, errors in the imaging have
to be absorbed in modeling noise, and the practi-
tioner should at least attempt to discern if the
wavelets extracted at different wells are statistically
different.

It is the author’s experience that commercial
wavelet extraction codes do not proceed from an
explicit probabilistic approach to wavelet extrac-
tion, and thus are not capable of producing
statistical output. Most appear to implement a
reasonable least-squares optimization of a model
misfit function, but produce only maximum like-
lihood (ML) estimates (with no associated uncer-
tainty measures), and often only cosmetically
filtered versions of these. In addition, there are a
number of parameters associated with the time-to-
depth mapping (henceforth called ‘stretch-and-
squeeze’), multi-stack and incidence angle (AVO)
effects, and imaging errors that ought in principle to
be jointly optimized along with the wavelet para-
meters to improve the well-tie. To the authors
knowledge, control of such parameters are not
available in commercial codes. Many of the
commercial programs quote the fine work of
Walden and White (1998) in their pedigree.
These algorithms are entirely spectrally based,
which make them very fast and well suited to
(probably) impatient users. However, the formula-
tion is not explicitly probabilistic, and the spectral
methods will no longer hold once extra modeling
parameters are introduced which will move the well-
log in space or time. More recently, a paper by
Buland and Omre (2003) presents a model very
much in the same spirit as that we advocate, but no
code is supplied. Some notable differences in
modeling priority exist between our work and that
of Buland. We consider the problem of the
unknown wavelet span as very important,
and devote considerable effort to modeling this.
Conversely, Buland puts some focus on correlated
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noise models and assumes the wavelet span to
be known apriori. It is our experience that the
wavelet span, treated as an inferable parameter,
couples strongly with the noise level, and is unlikely
to be well known in a practical situation. We also
prefer a more agnostic approach to modeling the
effective seismic noise, since this is a complex
mixture of forward modeling errors, processing
errors, and actual independent instrumental noise.
It seems unlikely that such a process would be
Gaussian, and still less susceptible of detailed
modeling of the two-point Gaussian correlation
function.

We have no objection in principle to the
application of cosmetic post-extraction filtering in
order to improve the apparent symmetry or
aesthetic appeal of extracted wavelets, but feel that
these requirements would be better embedded in
some kind of prior distribution in a Bayesian
approach. Similarly, the relationship between the
sonic log and any time-to-depth information
derived from independent sources (like a checkshot)
seems most naturally expressed with a Bayesian
likelihood function.

In summary, we feel that the simple convolutional
model is likely to linger on indefinitely as the
standard model for performing probabilistic or
stochastic inversion. It is then crucially impor-
tant to ensure that inversions are run with wavelets
and noise parameters optimally derived from
well data, checkshot information and the same
seismic information. There is then a considerable
need for quality software for performing well-ties
using a full probabilistic model for the wave-
let coefficients, span, time-to-depth parameters,
and other related parameters that may be re-
quired for inversion or other quantitative inter-
pretations.

We present just such a model and its software
implementation details in this paper. Section 2
presents the Bayesian model specification, and
suitable choices for the priors. The forward model,
likelihoods and selection of algorithms is discussed
in Section 3, with the final posterior distribution
described in Section 4. Questions of statistical
significance are addressed in Section 5. Details
about the code and input/output data forms are
discussed in Section 6, but most detail is relegated to
the electronic appendices 2 and 3 (see Appendix A).
A variety of examples are presented in Section 7,
and some final conclusions are then offered in
Section 8.
2. Problem definition

2.1. Preliminaries

The wavelet extraction problem is primarily one
of estimating a wavelet from well-log data, imaged
seismic data, and a time-to-depth relation that
approximately maps the well-log onto the seismic
data in time. We will use the following forward
model in the problem, with notation and motiva-
tions developed in the remainder of this section. The
observed seismic Sobs is a convolution of the
reflectivity r with a wavelet w plus noise en

Sobsðxþ Dx; yþ Dy; tþ DtRÞ

¼ rðx; y; tjsÞ � wþ en, ð1Þ

taking into account any lateral positioning (Dx;Dy)
and registration error DtR of the seismic data with
respect to the well coordinates. The well-log data
are mapped onto the time axis using time-to-depth
parameters s.

A few remarks about the various terms of this
equation are required. The imaged seismic data Sobs

are likely to have been processed to a particular
(often zero) phase, which involves estimation of the
actual source signature (gleaned from seafloor or
salt-top reflections, or perhaps even explicit model-
ing of the physics of the impulsive source), and a
subsequent removal of this by deconvolution and
bandpass filtering. The processed data are then
characterized by an ‘effective’ wavelet, which is
usually more compact and symmetrical than the
actual source signature. This processing clearly
depends on the early time source signature, so
subsequent dispersion and characteristics of the
amplitude gain control (and possible inverse-Q
filtering) may also make the ‘effective’ wavelet at
longer times rather different than the fixed wavelet
established by the processing. Since the wavelet
appropriate for inversion work will be that applic-
able to a time window centered on the inversion
target, it may be very different in frequency content,
phase and amplitude from that applicable to earlier
times. Thus, we begin with the assumption that the
user has relatively weak prejudices about the
wavelet shape, and any more definite knowledge
can be integrated into the well-tie problem at a later
stage via appropriate prior terms.

Deviated wells impose the problem of not
knowing precisely the rock properties in the region
above and below a current point in the well, since
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the log is oblique. Given that a common procedure
would be to krige the log values out into the near-
well region, and assuming the transverse correlation
range used in such kriging would be fairly long, a
first approximation is to assume no lateral varia-
tions in rock properties away from the well, so the
effective properties producing the seismic signal are
those read from the log at the appropriate zðtÞ. The
wavelet extraction could, in principle, model errors
in the reflectivity calculation, which could then
absorb errors associated which this long-correlation
kriging assumption. Another way to think about
this approximation is the leading term in a ‘near-
vertical’ expansion. The seismic amplitudes to use
will be those interpolated from the seismic cube at
the appropriate ðx; y; tðzÞÞ. In this approximation a
change in the time-to-depth mapping will result in a
new t0ðzÞ, but not a new ðx; yÞ. Extraction of these
amplitudes for each possible realization of the
time-to-depth parameters must be computationally
efficient.

Wavelet extraction for multiple wells will be
treated as though the modeling parameters at each
well are independent (e.g., time-to-depth para-
meters). The likelihood function will be a product
of the likelihood over all wells. The wavelet will be
modeled as transversely invariant.

The wavelet is parametrized by a suitable set of
coefficients over an uncertain span and will be
naturally tapered. Determination of the wavelet
span is intrinsic to the extraction problem. The
time-to-depth mapping from, e.g., checkshot data
will be in general not exact, since measurement
errors in first-break times in this kind of data may
not be negligible. We allow subtle deviations from
the initial mapping (‘stretch-and-squeeze’ effects) so
as to improve the quality of the well-tie, and the
extent of these deviations will be controlled by a
suitable prior.

Other parameters that may be desirable to model
are (1) time registration errors in the seismic: these
are small time errors that may systematically
translate the seismic data in time, and (2) positioning

errors: errors that may systematically translate the
seismic data transversely in space. The latter in
particular are useful in modeling the effects of
migration errors when using post-migration seismic
data. Since the wavelet extraction may be performed
with data from several wells, the positioning and
registration errors may be modeled as either (a)
independent at each location, which assumes that
the migration error is different in widely separated
parts of the survey, or (b) synchronized between
wells, which may be an appropriate assumption if
the wells are close.

The extraction is also expected to cope with
multi-stack data. Here the synthetic seismic differs
in each stack because of the different angle used in
the linearized Zoeppritz equations. Because of
anisotropy effects, this angle is not perfectly known,
and a compensation error for this angle is another
parameter which is desirable to estimate in the
wavelet extraction. Users may also believe that the
wavelets associated with different stacks may be
different, but related, for various reasons associated
with the dispersion and variable traveltimes of
different stacks. It is desirable to build in the
capacity to permit stretch and scale relations
between wavelets associated with different stacks.

Finally, the extraction must produce useful
estimates of the size of the seismic noise, which is
defined as the error signal at the well-tie for each
stack.

2.2. Wavelet parameterization

2.2.1. Basic parameters

Let the wavelet wðawÞ be parametrized by a set of
coefficients aw, with suitable prior pðawÞ. Like
Buland and Omre (2003), we use a widely dispersed
Gaussian of mean zero for pðawÞ. The wavelet is
parameterized in terms of a set of equispaced
samples i ¼ �M ; . . . ;N (kW in total), spaced at
the Nyquist rate associated with the seismic band
edge (typically about dt ¼ 1=ð4f peakÞ). The first and
last samples must be zero, and the samples for the
wavelet at the seismic data rate (e.g., 2,4ms) are
generated by cubic splines with zero-derivative
endpoint conditions. See Fig. 1. Note there are
fewer fundamental parameters than seismic sam-
ples. This parameterization enforces sensible band-
width constraints and the necessary tapering.

Cubic splines are a linear mapping, so the
coefficients at the seismic scale aS are related to
the coarse underlying coefficients aW linearly. Given
a maximum precursor and coda length, the two
indices M ;N then define a (usually small) set of
wavelet models with variable spans and centering.

For two-stack ties, the default is to assume the
same wavelet is used in the forward model for all
stacks. However, users may believe the stacks might
legitimately differ in amplitude and frequency
content (far-offset stacks usually have about 10%
less resolution than the near stack). We allow the
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Fig. 1. Parameterization of wavelet in terms of coefficients at

Nyquist spacing associated with band edge (black boxes), and

resulting coefficients generated at seismic time-sampling rate

(circles) by cubic interpolation. Cubic splines enforce zero

derivatives at edges for smooth tapering.
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additional possibility of ‘stretching and scaling’ the
far wavelet (two additional parameters added onto
aw) from the near wavelet to model this situation.
The priors for the additional ‘stretch and scale’
factors are taken to be Gaussian, most commonly
with means close to 1 and narrow standard
deviations.

2.2.2. Wavelet phase constraints

Sensible bandwidth and tapering constraints are
built into the wavelet parameterization. Addition-
ally, users often believe that the wavelet ought to
exhibit some particular phase characteristic, e.g.,
zero or constant phase. Since the wavelet phase f is
obtained directly from a Fourier transform of the
wavelet ~w ¼ F ðwðawÞÞ as fi ¼ tan�1ðIð ~wiÞ=Rð ~wiÞÞ,
for frequencies indexed i, a suitable phase-con-
straint contribution to the prior may be written as

pðawÞ� exp �
X

i

ðfiðawÞ � f̄Þ2=2s2phase

 !
,

where the sum is over the power band of the seismic
spectrum (the central frequencies containing about
90% of the seismic energy). Here f̄ is a target phase,
either user-specified, or computed as hfiðawÞi if a
constant (floating) phase constraint is desired. A
problem with this formulation is that the branch
cuts in the arctan function cause discontinuities in
the prior. To avoid this, we use the form

pphaseðawÞ� exp �
X

i

ðDð ~wi; f̄Þ
2=2s2phaseÞ

 !
,

where Dð ~wi; f̄Þ is the shortest distance from the
point ~wi to the (one-sided) ray at angle f̄ heading
out from the origin of the complex ~w plane. This
formulation has no discontinuities in the error
measure at branch cuts.

2.2.3. Wavelet timing

In many instances, users also believe that the peak
of the wavelet response should occur at zero time, so
timing errors will appear explicitly in the time-
registration parameters, rather than being absorbed
into a displaced wavelet. Very often, a zero-phase
constraint is too strong a condition to impose on the
wavelet to achieve the relatively simple effect of
aligning the peak arrival, since it imposes require-
ments of strong symmetry as well. This peak-arrival
requirement can be built into the prior with the
additional term

ppeak-arrivalðawÞ

� expð�ðtpeakðawÞ � t̂peakÞ
2=2s2peakÞ,

where t̂peak and speak are user-specified numbers,
and tpeakðawÞ is the peak time of the wavelet inferred
from the cubic spline and analytical minimization/
maximization. Clearly the peak time is only a piece-
wise continuous function of the wavelet coefficients,
so we advise the use of this constraint only where an
obvious major peak appears in the unconstrained
extraction. If not, the optimizer’s Newton schemes
are likely to fail.

2.3. Time-to-depth constraints

2.3.1. Checkshots and markers

The primary constraint on time to depth is a
series of checkshots, which produce data pairs
fz
ðcÞ
i ; t

ðcÞ
i g with associated time uncertainty sðcÞt;i ,

stemming primarily from the detection uncertainty
in the first arrival time. The depths are measured
(well-path) lengths, but convertible to true depths
from the well survey, and we will assume no error in
this conversion. Such pairs can often be sparse, e.g.,
500 ft spacings, and will not necessarily coincide
with natural formation boundaries.

Markers are major points picked from the seismic
trace and identified with events in the logs. They
form data triples fz

ðmÞ
i ;Dt

ðmÞ
i ;sðmÞDt;ig which are depths

zðmÞ and relative timing errors Dt
ðmÞ
i with respect to

the time-depth curve associated with the linearly
interpolated checkshot. The picking error is sðmÞDt;i.
These can obviously be converted to triples
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fz
ðmÞ
i ; tðmÞi ;sðmÞt;i g, which are the same fundamental

type of data as the checkshot. Here

t
ðmÞ
i ¼ tinterpolated-from-checkshotðz

ðmÞ
i Þ þ Dt

ðmÞ
i

and sðmÞt;i ¼ sðmÞDt;i. This formula is used to convert
marker data to checkshot-like data, and is not
intended to imply or induce any correlation between
the two sources of information in the prior.

We use the vector s ¼ ft
ðcÞ
i ; t

ðmÞ
i g (combining

checkshots and marker deviations) as a suitable
parameterization of the required freedom in the
time-to-depth mapping. We assume that the errors
at each marker or checkshot position are indepen-
dent and normal, so the prior for the time-to-depth
components becomes

pðtiÞ� exp �
ðt� t

ðc;mÞ
i Þ

2

2s2t;i

 !
.

The complete time prior distribution pðsÞ ¼
Q

i pðtiÞ

is truncated to preserve time ordering by subtracting
a large penalty from the log-prior for any state s

that is non-monotonic.

2.3.2. Registration and positioning errors

A further possibility for error in the time-to-depth
mapping is that the true seismic is systematically
shifted in time by a small offset. Such a registration
error DtR is modeled with a Gaussian prior, and
independently for each stack. Similarly, a simple
lateral positioning error Drp ¼ fDx;Dyg is used to
model any migration/imaging error that may have
mis-located the seismic data with respect to the
well position. This too is modeled by a Gaussian
prior pðDrpÞ� expð�ðDx� DxiÞ

2=2s2Dx;iÞ expð�ðDy�

DyiÞ
2=2s2Dy;iÞ for well i. Each seismic minicube

(corresponding to each well) will have an indepen-
dent error, but this can (optionally) be taken as the
same for each stack at the well. Positioning errors
for closely spaced wells can be mapped onto the
same parameter. We write DrR ¼ fDtR;i;Dxi;Dyig as
the full model vector required for these registration
and positioning errors.

2.4. Log data

For computational efficiency during the extrac-
tion, the sonic and density log data are first
segmented into chunks whose thickness ought not
to exceed lB �

1
6f BE, where f BE is the upper band-

edge frequency of the seismic. We use the aggrega-
tive methods of Hawkins and ten Krooden (1978)
(also Hawkins, 2001) to perform the blocking, based
on the p-wave impedance. The effective properties
of the blocked log are then computed using Backus
averaging (volume weighted arithmetic density
average plus harmonic moduli averages (Mavko
et al., 1998)) yielding the triples Dwell ¼ fvp; vs;rg for
the sequence of upscaled layers. The reflectivities r
in Eq. (1) are computed at these upscaled-layer
boundaries. The shear velocity may be computed
from approximate regressions if required (a near-
stack wavelet extraction will be relatively insensitive
to it anyway). This blocking procedure is justified by
the fact that the convolutional response of very
finely layered systems is exactly the same as the
convolutional response of the Backus-averaged
upscaled system, providing the Backus average is
done to ‘first order’ in any deviations of the logs
from the mean block values.

The raw log data and its upscaled values can be
expected to have some intrinsic error, which
ultimately appears as an error er of the reflectivity
values computed at the interfaces using the linear-
ized Zoeppritz equations. The nature of errors in
well-logging is complex in general. A small white
noise component always exists, but the more serious
errors are likely to be systematic or spatially
clustered, like invasion effects or tool-contact
problems. For this reason, we make no attempt to
model the logging errors using a naive model, and
expect the logs to be carefully edited before use.

3. Forward model and likelihood

The forward model for the seismic is the usual
convolutional model of Eq. (1). We suppress
notational baggage denoting a particular well and
stack. The true reflectivity is that computed from
the well-log projected onto the seismic time axis
rðx; y; tjsÞ (which is a function of the current
parameters time-to-depth map parameters s).

The reflection coefficients r are computed from
the blocked log properties, using the linearized
Zoeppritz form for the p–p reflection expanded to
Oðy2Þ (top of p. 63, Mavko et al., 1998):

RppðBÞ ¼
1

2

Dr
r
þ

Dvp

vp

� �

þ By2
Dvp

2vp

�
2v2s ðDr=rþ 2Dvs=vsÞ

v2p

 !
, ð2Þ

with notation r ¼ 1
2
ðr1 þ r2Þ, Dr ¼ r2 � r1; etc., for

the wave entering layer 2 from layer 1 above. Here,
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the factor B is introduced to model a situation
where the angle y for a given stack obtained from
the Dix equation is uncertain. The stack has user-
specified average stack velocity V st, event-time T st

and stack range ½X st;min;X st;max�. Assuming uniform
weighting, the mean-square stack offset is

hX 2
sti ¼

ðX 3
st;max � X 3

st;minÞ

3ðX st;max � X st;minÞ
, (3)

from which the y2 at a given interface is computed
as

y2 ¼
v2p;1

V4
stT

2
st=hX

2
sti

. (4)

Due to anisotropy and other effects related to
background AVO rotation (Castagna and Backus,
1993), the angle may not be perfectly known, so B is
introduced as an additional parameter, typically
Gaussian with means close to unity and small
variance: pðBÞ� expð�ðB� B̄Þ2=2s2BÞ. The B para-
meter can be independent for each stack if multiple
stacks are used.

The reflection Rpp is computed at all depths z

where the blocked log has segment boundaries, and
the properties used in its calculation are the segment
properties from Backus averaging, etc. The reflec-
tion is then projected onto the time axis using the
current time to depth map and four-point Lagrange
interpolation. The latter approximates the reflection
by placing four suitably weighted spikes on the four
nearest seismic sampling points to the projected
reflection time.

3.1. Contributions to the likelihood

The optimization problem aims at obtaining a
synthetic seismic close to the observed data for all
wells and stacks, whilst maintaining a credible
velocity model and wavelet shape. The prior
regulates the wavelet shape, so there are contribu-
tions to the likelihood from the seismic noise and
interval velocities. We address these in turn.

3.1.1. Seismic noise pdf parametrization

Physical seismic noise is largely a result of small
waves with the same spectral character as the main
signal (multiple reflections, etc.). However, the noise
process we model, en, is a mixture of this real noise
and complex modeling errors, much of the latter
originated in the seismic processing. We take this as
a random signal with distribution PN ðenjanÞ, the
meta-parameters an (e.g., noise level, covariance
terms, etc.) having prior pðanÞ.

Probably the simplest approach to the meta-
parameters in the noise modeling is to avoid the
issue of the noise correlations as much as possible
by subsampling. It is trivial to show that if a
random process has, e.g., a Ricker-2 power spec-
trum (i.e., �f 2 expð�ðf =f peakÞ

2
Þ), then 95% of the

spectral energy in the process can be captured by
sampling at times

DTs ¼ 0:253=f peak, (5)

where f peak is the peak energy in the spectrum (and
often about half of the bandwidth). Most practical
seismic spectra will yield similar results. To keep the
meta-parameter noise description as simple as is
reasonable, we choose to model the prior distribu-
tion of the noise for stack j as Gaussian, with Nj

independent samples computed at this sampling-
rate, mean zero, and overall variance s2n;j . Since the
variance is unknown, it must be given a suitable
prior. Gelman et al. (1995) suggest a non-informa-
tive Jeffrey’s prior (PN ðsn;jÞ�1=sn;j) for dispersion
parameters of this type, so the overall noise
likelihood + prior will look like

PN ðen;rnÞ�PNðenjrnÞpðrnÞ

�
Y

stacks j

1

sNjþ1
n;j

expð�e2n=2s
2
n;jÞ. ð6Þ

Correlations between the noise level on closely
spaced stacks may be significant, so we assume the
user will perform multi-stack ties only on well-
separated stacks, so the priors for each stack are
sensibly independent.

3.1.2. Interval velocities

Any particular state of the time depth parameter
vector s corresponds to a set of interval velocities
Vint between checkshot points. It is desirable for
these to not differ too seriously from an upscaled
version of the sonic log velocities. If Vint;log are the
corresponding (Backus-upscaled) interval velocities
from the logs (which we treat as observables), we
use the likelihood term

pðVint;logjsÞ� expð�ðVintðsÞ � Vint;logÞ
2=2s2Vint

Þ,

where sVint
is a tolerable interval velocity mismatch

specified by the user. Typically acceptable velocity
mismatches may be of the order of 5% or so,
allowing for anisotropy effects, dispersion, model-
ing errors, etc.
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Even in the case that the interval velocity
constraints are weak or disabled, a large penalty
term is introduced to force monotonicity in the
checkshot points, since the Gaussian priors will
allow an unphysical non-monotonic time-to-depth
map.

4. Forming the posterior

For a given wavelet span, the Bayesian posterior
for all the unknowns will then be

Pðaw; s;DrR;B; rnÞ

�pðrnÞpðBÞpðawÞpphaseðawÞppeak-arrivalðawÞ

�
Y

wells i

pðsiÞpðDriÞ ðpriorÞ

�
Y

wells i

pðVint;logjsiÞ ðlikelihoodsÞ

�
Y

wells i
stacks j

PN ðSobs;ijðxþ Dxi; yþ Dyi; tþ DtR;iÞ

� ðrijðsiÞ � wðawÞÞjrnÞ. ð7Þ

The maximum a posteriori (MAP) point of this
model is then a suitable estimate of the full set of
model parameters, and the wavelet can be extracted
from this vector. This point is found by minimizing
the negative log posterior using either Gauss–
Newton or standard Broyden–Fletcher–Goldfarb–
Shanno (BFGS) methods (Nocedal and Wright,
1999; Koontz and Weiss, 1982). The optimizer by
default is started at the prior-mean values, with
typical scales set to carefully chosen mixtures of the
prior standard deviations or other suitable scales.
The parameter uncertainties are approximated by
the covariance matrix formed from the quadratic
approximation to the posterior at the MAP point,
as per Appendix 1 (see Appendix A).

In some cases, especially those where registration
or positioning terms exist in the model, the posterior
surface is multi-modal. The code can then employ a
global optimization algorithm formed by sorting
local optimization solutions started from dispersed
starting points, at the user’s request. The starting
points are distributed in a hypercube formed
from the registration/positioning parameters. This
method is naturally more expensive to run than
the default. An illustration of this accompanies
Example 7.2.

Where lateral positioning errors are suspected
and modeled explicitly, the MAP parameters
obtained in the optimization may not be especially
meaningful if the noise levels are high. Better ‘fits’ to
the tie can be obtained through pure chance as
easily as through correct diagnosis of a misposition-
ing, and users have to beware of this subtle
statistical possibility. A more detailed discussion
can be found in Appendix 4 (see Appendix A). We
urge the use of this facility with caution.
4.1. The uncertain span problem

From the user-specified maximum precursor and
coda times, a set of candidate wavelet models with
indices M ;N can be constructed which all lie within
the acceptable bracket. These can be simply
enumerated in a loop. The posterior space is then
the joint space of models and continuous para-
meters, and each model is of different dimensions.
We treat the wavelet span problem as a model-
selection problem where we seek the most likely
wavelet model k (from among these k ¼ 1; . . . ;Nm

models) given the data D (D ¼ fSobs;Dwellg). These
models are assumed to have equal prior weight. The
MAP wavelet model measured by the marginal

likelihood of the model k

PðkjDÞ�

Z
Pðaw; s;DrR;B;rnÞ

�daw ds dDrR dBdrn ð8Þ

is an appropriate measure to determine the ML
wavelet. For linear models, it is well known that the
overall model probability computed from this
relation (and the associated Bayes factors formed
by quotients of these probabilities when comparing
models) includes a strong tendency to penalize
models that fit only marginally better than simpler
models. A simple approximation to the integral is
the standard Bayesian information criterion (BIC)
penalty (Raftery, 1996), which adds a term
1
2
np logðndÞ to the negative log-posterior, nd being
the number of independent data points (which will
be the number of near-Nyquist samples of the noise
Sobs � Ssynth when the mismatch trace is digitized
over the time-interval of interest), and np is the
number of parameters in the wavelet. We do not use
the BIC directly, but evaluate integral (8) using the
Laplace approximation (Raftery, 1996), based
on the numerical posterior covariance matrix ~C
obtained in Appendix 1 (see Appendix A).

Users are sometimes confused as to why long
wavelets yield better ties than short ones, and how
to choose the length. Use of the formal marginal
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model likelihood immediately solves this problem:
the better ties are invariably not statistically
significant. The Bayes factor concentrates the
marginal likelihood on the wavelet span of most
statistical significance.

Readers unfamiliar with model-selection pro-
blems should be aware that the choice of the prior
standard deviations for the wavelet coefficients is no
longer benign when there are different size models
to compare. If the prior standard deviations are
chosen too large, the model-selection probabilities
suffer from the Lindley Paradox (Dennison et al.,
2002) and the posterior probability always falls on
the shortest wavelet. To prevent this, the character-
istic scale in the prior is chosen about three times
larger than the RMS seismic amplitude divided by a
typical reflection coefficient.

The code computes a normalized list of all
posterior wavelet mode probabilities, so if the user
requests realizations of the wavelet from the full
posterior, these are sampled from the joint model
and continuous-coefficient space. Very often, the
posterior probability is concentrated strongly on a
particular span.

5. Questions of statistical significance

Even with a sophisticated well-tie code such as
that described in this paper, wavelet extraction is
not a trivial workflow. In many cases, the main
reflections in the data do not seem to correspond
very well to major reflections in the well-logs, and
well-matched synthetics can be produced only by
switching on many degrees of freedom, such as
positioning, registration errors, and highly flexible
checkshot points, with narrow time gates for the
extraction. In such situations, the tie may well be
totally spurious. A useful flag for such a situation is
when the posterior probability lands almost entirely
on the shortest wavelet, and also when the quality of
the tie degrades rapidly with increasing time gate
width.

There are ways to address the problem more
rigorously, but the full detail is beyond the scope of
this paper. Roughly speaking, we perform a simple
significance calculation by computing an ensemble
of wavelet extractions, using completely random

seismic data, and compare the noise-level statistics
of this ensemble to the noise level of the actual data
extraction. The random seismic minicubes are
generated using a FFT method based on the po-
wer spectrum SðxÞ ¼ w2

z expð�w2
zÞ expð�ðw

2
x þ w2

yÞÞ,
where wz is scaled from a Ricker-2 fit to the data’s
average vertical power spectrum, and wx;y are scaled
so as to give a lateral correlation length specified by
the user. The CDF of the final minicube is then
mapped to that of the data, so the univariate
statistics of the data minicubes are preserved. The
latter step is important, as processed seismic is not
univariate Gaussian, and the wavelet extraction is
sensitive to amplitudes.

This Monte Carlo test can be run in cases where
the user is suspicious of the meaningfulness of the
fit, and generates a CDF of the noise parameters
obtained over the Monte Carlo ensemble. This
should have no appreciable overlap with the true-
extraction noise best estimates in cases of mean-
ingful ties. An example is shown in Section 7.3.

6. The code

The wavelet extraction code is written in Java,
and based largely on efficient public domain linear
algebra1 and optimization (Koontz and Weiss,
1982) libraries, along with the seismic handling
libraries of its companion software Delivery.2 It
comprises about 50K lines of source code. Wavelet
extraction is a relatively light numerical application:
simple extractions take seconds and more complex
problems may take minutes.

Users are expected to be able to provide seismic
data in big-endian ‘minicubes’ centered at each well
(the seismic resides entirely in RAM), plus log data
in ASCII LAS or simple geoEAS format. Check-
shots and well surveys in a simple geoEAS are also
required. Details of these formats are given in
Appendix 2 (see Appendix A).

Outputs are a mixture of seismic SU3 files for
wavelets, synthetic-and-true SU seismic pairs, and
simple ASCII formats for the parameter estimations
and uncertainties. A small graphical visualization
tool (extractionViewer) is provided as part of
the distribution which produces the typical
cross-registered log and seismic displays shown
in the examples. Details of the output files are in
Appendix 3 (see Appendix A).

http://tilde-hoschek.home.cern.ch/hoschek/colt/index.htm
http://tilde-hoschek.home.cern.ch/hoschek/colt/index.htm
http://tilde-hoschek.home.cern.ch/hoschek/colt/index.htm
http://www.petroleum.csiro.au
http://timna.mines.edu/cwpcodes
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The code is available for download (Gunning and
Glinsky, 2004), [3], under a generic open-source
agreement. Improvements to the code are welcome
to be submitted to the author. A set of simple
examples is available in the distribution, and are
briefly illustrated here.

7. Examples

7.1. Simple single reflection

The simplest example possible is a set of logs that
produce a single reflection, so the synthetic trace
reflects the wavelet directly. Two synthetic data
minicubes were generated from the logs with zero
and a modest noise level. With the noise-free
minicube, the wavelet extracts perfectly, and
the posterior distribution converges strongly on
the wavelet model just long enough to capture the
true wavelet energy.

More interesting is the extraction on the noisy
minicube, shown in Fig. 2. Here the central check-
shot point was deliberately shifted 10ms, and it
shares a 10ms uncertainty with all the checkshot
rho sonic Vp V-interval TVD MD synthetic seismictime(ms) time(

Mis-timed wavelet(A) (B

Fig. 2. Example of recovery of wavelet from single reflection with noi

wavelet. (B) Case where phase-constrained prior forces timing error to

displays co-registered time, total vertical depth (TVD), measured depth

shown are (in order) density logs r, sonic vp, V int;log (interval velocity

observed seismic Sobsðxþ Dx; yþ Dy; tþ DtRÞ. Viewing display can tog
points spaced at 500 ft. The naive extracted wavelet
is clearly offset. A symmetrical wavelet can be
forced by switching on a zero-phase constraint, and
the checkshot point then moves about 10ms back-
wards, to allow the zero-phase recovered wavelet to
still generate a ‘good’ synthetic.

This extraction is run with the command line

% waveletExtractor WaveletExtraction.
xml -- dump-ML-parameters -- dump-ML -
synthetics --dump-ML-wavelets --fake-
Vs -v 4 -c -NLR

where the main details for the extraction are
specified in the XML file WaveletExtrac-
tion.xml. The XML shows how to set up an
extraction on a single trace, where the 3D inter-
polation is degenerate. The runtime options corre-
spond to frequently changed user preferences. Their
meanings are documented by the executable wa-
veletExtractor in SU style self-documentation
[2]. Amongst the most important options are
(a) those related to the set of wavelet spans (cf.
Section 4.1): -c,-l denote respectively a centered
set of wavelets, or the longest only. (b) Log-data
rho sonic Vp V-interval TVD MD synthetic seismicms)

Zero-phase enforced   )

sy data. (A) Case where time-to-depth error forces mis-timing of

be absorbed in uncertain time-to-depth map. Viewing program

(MD) scales for MAP (best-estimate) time-to-depth model. Also

from upscaled blocked sonic), synthetic seismic (rðx; y; tjsÞ � w),
gle on acoustic impedance, a blocked vp log, slownesses, etc.
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options: -NLR; assume no reflections outside log
(so entire log can be used), --fake-Vs; concoct
approximate fake shear log from p-wave log and
density.

Standard graphical views of the MAP extraction
are obtained with

% extractionViewer MLgraphing-file.MOST_
LIKELY.well_log.txt

and the most likely wavelet with (on a little-endian
machine)

% cat MLwavelet.MOST_LIKELY.su j suswap-
bytes jsuxgraph
-0.02 -0.02

0

0.02

Most likely

0

0.02

-1000 0

rho sonic Vp V-interval TVD MD synthetic seismictime(ms) ti

mode number
0 1 2 3 4 5 6

tim
e 

(s
)

tim
e 

(s
)

(A)

(C) (D)

(B

Fig. 3. Example of typical dual-well extraction for ‘Bonnie’ wells: (A)

between interval velocities and sonic logs. (C) Maximum likelihood (ML

Wavelet realizations from full posterior (Section 4.1) showing small post

a section of Bonnie-House log.
7.2. Standard dual-well extraction
PRESS
& Geosciences 32 (2006) 681–695 691
Here we illustrate a typical, realistic dual well
extraction for two widely separated wells ‘Bonnie-
House’ and ‘Bonnie-Hut’. The checkshots are of
high quality (bar a few points), so time-to-depth
errors are confined to registration effects only.
We illustrate here the peak-arrival constraint
prior (cf. Section 2.2.3), which forces the wavelet
peak amplitude to arrive at t ¼ 0� 1ms. Multi-
start global optimization was used. A Monte Carlo
study of the extraction here shows the extraction
to be significant with very high probability. See,
Fig. 3.
1000

rho sonic Vp V-interval TVD MD synthetic seismicme(ms)

(E)

)

Tie at ‘Bonnie-House’, (B) ‘Bonnie-Hut’. Note close agreement

) wavelet for each model-span, with ML wavelet solid curve. (D)

erior uncertainty. (E) Example of acoustic impedance blocking on
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Fig. 4. Example of basins of attractions for two registration parameters for Bonnie-House and Bonnie-Hut. Grayscale represents MAP

negative log-posterior value obtained starting from values on axes. All other parameters are started at their prior means. (A) Basins for

problem without peak-arrival constraints. (B) Case with peak-arrival constraint �1ms (--constrain-peak-arrival 0 1). The

darkest shade is the global minimum. Note how peak-arrival term in prior greatly enlarges basin of attraction of desired global optimum,

without affecting overall MAP value.
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The vertical wells ‘Bonnie-House’ and ‘Bonnie-
Hut’ have relatively good quality checkshots. For
this reason, time-registration effects were the only
unknown parameters included in the time-to-depth
mapping. This kind of problem creates an obvious
non-uniqueness in the inverse problem if the wavelet
is long enough to offset itself in time by the same
offset as the registration error. The prior in the
registration error in principle should remove the
non-uniqueness of the global minimum in this case,
but a variety of poorer local minima do appear in
the problem, in which the local optimizer is easily
trapped.

This problem illustrates a typical interactive
workflow. (1) The extraction is performed with no
phase or timing constraints, often for a single long
wavelet (the -l option), on each well at a time. The
resulting wavelets are then examined to see if the
peak response (assuming the expectation of a
symmetric-looking wavelet) is systematically shifted
in time. Very bad ties may be noted, and the guilty
wells excluded. (2) Large systematic offsets can then
be directly entered into the XML file for each well
(in consultation with the imaging specialist!),
possibly allowing registration timing errors around
the shift. (3) The individual extractions can then be
rerun, confirming that major timing problems have
been removed. (4) A variety of joint-well extractions
may then be attempted, perhaps turning on phase or
peak-arrival constraints.

In principle, the manual setting of offsets is
something that can be automated as part of a
(expensive) global optimization routine (available
using the --multi-start heuristic), but users
usually want to examine the well-ties on an
individual basis before proceeding to joint extrac-
tions. It is often the case that imaging around a well
is suspicious for various reasons—which translates
into poor ties, so the best decision may be to omit
the well altogether, rather than lump it into what
may otherwise be a good joint extraction.

The actual extraction here is run with

% waveletExtractor BonnieHousePlusBonnie
Hut.xml --fake-Vs --dump-ML-parameters
--dump-ML-synthetics --dump-ML-wave-
lets -v 4 [--constrain-peak-arrival 0 1]
-c --multi-start -NLR

An illustration of the complexity of the basins of
attraction is shown in Fig. 4.
7.3. AVO extraction for ‘Bitters’ well

Here we illustrate a typical single-well extraction
on log data that has a strong AVO character. The
two stacks are at about 5� and 30�. The seismic here
was generated synthetically, with a large level of
white noise added to the reflection sequence before
convolution. The extraction is then of poorish
quality, but still statistically significant at about
the 10% level, even though the most likely wavelet
corresponds to the shortest model. The same
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Fig. 5. (A) AVO character of synthetic seismic using Ricker-2 wavelet. Note strong variation around 1.5 s. (B) Two-stack extraction screen

capture: far-stack synthetic and observed traces are appended at the right. (C) ML wavelets vs. wavelet length (mode) with no peak-

constraints. ML wavelet (boldest trace) is shortest mode. (D) Same, with peak-constraints in prior. (E) Recovered wavelet vs. underlying

wavelet used to generate synthetics.
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wavelet was used for both stacks, so no wavelet
stretch-and-scale parameters were used.

Here the XML shows how to set up an extraction
on a single seismic line, where the 3D interpolation
is approximated by perpendicular ‘snapping’ onto
the 2D line. The extraction module can be used to
generate AVO gathers of the kind seen in Fig. 5a.
The command
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% waveletExtractor Bitters.xml --dump-
ML-wavelets -v 4 -NLR --make-synthetic
-AVO-gather 80 2

was used in this example, which generates 80Hz
synthetics sampled at 2ms. Angles are stored in the
SU header word f2. Displays can then be obtained
via, e.g.,

% cat synth_seis.Bitters.las.AVO-gather.
su j[suswapbytes] jsuxwigb x2beg ¼ 0

The synthetic seismic minicubes are generated

using the --make-synthetic freq dt noise
option, so, e.g.,

% waveletExtractor Bitters.xml -v 4 -NLR
--dump-ML-wavelets--make-synthetic 80
2 2.3

makes a pair of synthetic minicubes using a Ricker 2
wavelet of 80Hz band edge, sampled at 2ms, with a
noise reflectivity 2.3 times the RMS reflection power
measured in the logs added onto the log reflectivity.
The time-to-depth curve is the prior mean read from
the checkshot.

The second stack is specified naturally in the
XML file, and the extraction run with

% waveletExtractor Bitters.xml --dump-
ML-parameters --dump-ML-synthetics --
dump-ML-wavelets -v 4 -c -NLR

Significance testing is obtained by the command

% waveletExtractor Bitters.xml --dump-
ML-parameters --dump-ML-synthetics --
dump-ML-wavelets -v 4 -c -NLR --monte-
carlo 10

which specifies a lateral correlation length of 10
traces in the Monte Carlo synthetic minicubes. The
position of the ML noise parameters with respect to
the Monte Carlo noise parameter distribution is
found by examining the file MC_ParameterSum-
mary.txt. In this case, they sit about 10% of the
way into the Monte Carlo distribution.

With very noisy data sets like this one, use of
discontinuous or strongly non-linear terms in the
likelihood such as the phase-constraint or wavelet
peak terms is somewhat dangerous. If the extraction
is barely significant without these constraints (a
suggested first test), it will be even less so when they
are added.
8. Conclusions

We have introduced a new open-source software
toolkit for performing well-ties and wavelet extrac-
tion. It can perform multi-well, deviated well, and
multi-stack ties based on imaged seismic data,
standard log files, and checkshot information.
Uncertainties in the time-to-depth conversion and
the imaging and wavelet aesthetic constraints are
automatically included by the use of Bayesian
techniques. The module produces maximum-apriori
(‘best’) estimates of all the relevant parameters, plus
measures of their uncertainty. Stochastic samples of
the extracted wavelet can be produced to illustrate
the uncertainty in the tie, and Monte Carlo tests
of the well-tie significance can be performed for
highly suspicious ties. Our experience is that the
wavelet and noise estimates produced are of critical
importance for inversion packages like Delivery and
many other applications.

Inputs for the module are common seismic data
minicubes, well-log files, simple ASCII representa-
tions of checkshot information, and a simply
written XML file to specify all the needed para-
meters. Users will be readily able to tackle their own
problems by starting from the provided examples.

The authors hope that this tool will prove useful
to the geophysical and reservoir modeling commu-
nity, and encourage users to help improve the
software or submit suggestions for improvements.
Acknowledgements

The first author gratefully acknowledges generous
funding from the BHP Billiton technology program.
Helpful comments from the two reviewers are also
appreciated.
Appendix A. Supplementary data

Supplementary data associated with this article
can be found in the online version, at 10.1016/
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