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Abstract

We introduce a new open-source toolkit for model-based Bayesian seismic inversion called Delivery. The prior model

in Delivery is a trace-local layer stack, with rock physics information taken from log analysis and layer times initialised

from picks. We allow for uncertainty in both the fluid type and saturation in reservoir layers: variation in seismic

responses due to fluid effects are taken into account via Gassman’s equation. Multiple stacks are supported, so the

software implicitly performs a full AVO inversion using approximate Zoeppritz equations. The likelihood function is

formed from a convolutional model with specified wavelet(s) and noise level(s). Uncertainties and irresolvabilities in the

inverted models are captured by the generation of multiple stochastic models from the Bayesian posterior (using

Markov Chain Monte Carlo methods), all of which acceptably match the seismic data, log data, and rough initial picks

of the horizons. Post-inversion analysis of the inverted stochastic models then facilitates the answering of commercially

useful questions, e.g. the probability of hydrocarbons, the expected reservoir volume and its uncertainty, and the

distribution of net sand. Delivery is written in java, and thus platform independent, but the SU data backbone makes

the inversion particularly suited to Unix/Linux environments and cluster systems.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The basic purpose of the seismic experiment in the oil

exploration business has always been the extraction of

information regarding the location, size and nature of

hydrocarbon reserves in the subsurface. To say this is to

also grant that the analysis of seismic data is necessarily

and always an inversion problem: we do not measure

reservoir locations and sizes; we measure reflected
appendixes available from server at http://
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waveforms at the surface, from which information

about potential reservoir zones is extracted by a

sequence of processing steps (stacking, migration, etc.)

that are fundamentally inversion calculations designed

to put reflection responses at their correct positions in

time and space.

Such inversion calculations invariably depend on

assumptions about the character of the geological

heterogeneity that are usually described informally

(‘‘gentle dips’’, ‘‘weak impedance contrasts’’, etc), but

could equally well be couched in formal probabilistic

language. Further, such assumptions often hold well

across a range of geological environments, and are of a

nature that leads to generic processing formulae (e.g.

Kirchoff migration) that may be applied by the practi-

tioner with merely formal assent to the assumptions
d.
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underlying their validity. From this point of view, we

can say that traditional inversion is fundamentally based

on a model of the subsurface, but no particular details of

that model appear explicitly in the resulting formulae.

These inversions can also be claimed to have integrated

certain portions of our geological knowledge, in that the

empowering assumptions have been made plausible by

observation and experience of typical geological struc-

tures.

By this line of argument, traditional inversion can be

seen as an attempt to explain the observed surface data

by appeal to a broad (but definite) model of the

subsurface, which yields congenial formulae when we

incorporate certain geological or rock-physics facts

(‘‘weak reflections’’, etc.). It is then no great step of

faith to assert that inversion techniques ought to

incorporate more definite forms of knowledge about

the subsurface structure, such as explicit surfaces or

bodies comprised of certain known rock types whose

loading behaviour may be well characterised.

Such a step is in fact no longer contentious: it has long

been agreed in the geophysical community that seismic

inversion tools ought to use whatever rock-physics

knowledge is regionally available in order to constrain

the considerable non-uniqueness encountered in tradi-

tional inversion methodologies. Further, in an explora-

tion or early-appraisal context, some limited log or core

data are usually available, from which additional

constraints on likely fluid types, time and depth

horizons, etc. can be constructed.

In practice, such knowledge is difficult to incorporate

into ‘‘model-free’’ methods like sparse-spike inversion,

even though these methods have a sound geophysical

basis. Conversely, detailed multi-property models of the

reservoir—such as geostatistical earth models—are often

weak in their connection to geophysical principles: the

relationship to seismic data is often embodied in

arbitrary regression or neural-network mappings that

implicitly hope that the correct rock physics has been

divined in the calibration process.

Another long-settled consensus is that the inversion

process is incurably non-unique: the question of interest

is no longer ‘‘what is such and such a quantity’’, but

‘‘what is the multi-component distribution of the

quantities of interest’’ (fluids, pay zone rock volume,

etc.) and the implications of this distribution for

development decisions. The development of this dis-

tribution by the integration of information from

disparate sources and disciplines with the seismic data

is now the central problem of seismic inversion. An

interesting aspect of this consensus is that most workers

in seismic inversion (and closely related problems like

reservoir history matching) now concede that the most

satisfactory way to approach the non-uniqueness and

data-integration problems is via a Bayesian formalism

(other approaches to stabilising the inverse problem via
regularisation or parameter elimination are perhaps best

seen as varieties of Bayesian priors, perhaps augmented

with parsimony-inducing devices like the Bayes informa-

tion criterion). These approaches use explicit models for

the quantities of interest: typically a suite of layers or

facies, whose location and internal properties are the

properties we wish to invert for. Examples of such work

are Omre and Tjelmeland (1997), Eide et al. (2002),

Buland and Omre (2003), Buland et al. (2003), Eidsvik

et al. (2002), Leguijt (2001) and Gunning (2000) in the

context of seismic problems, and the many papers of

Oliver and his school in the context of reservoir

dynamics problems, e.g. Chu et al. (1995), Oliver

(1996, 1997). Newer kinds of Bayesian inversion are

also appearing, where the model uncertainty itself (e.g.

the number of layers) is taken into account, e.g.

Malinverno (2002). It is recognised also that the

posterior distribution of interest is usually quite

complicated and impossible to extract analytically; its

impact on decisions will have to be made from Monte

Carlo-type studies based on samples drawn from the

posterior.

Nevertheless, the use of model-based Bayesian tech-

niques in seismic inversion at this point in time is still

novel or unusual, for a mixture of reasons. The main

reason is undoubtedly the lack of accessible software for

performing such inversions, and the associated lack of

fine control of such systems even when they are available

as commercial products. Bayesian inversion methodol-

ogies are unlikely to ever become ‘‘black-box’’ routines

which practitioners can apply blindly, and successful

inversions will usually be the result of some iterative

process involving some adjustment of the model-prior

parameters and choice of algorithms. Such flexibility is

hard to achieve in ‘‘black-box’’ algorithms. A second

reason is that the amount of effort required to construct

a suitable prior model of the rock physics and geological

surfaces of interest will always be non-trivial, though

repeated experience of such an exercise will reduce the

required effort with time. This effort is justified by the

fact that a Bayesian inversion constructed around an

appropriate prior will always produce more reliable

predictions than an inversion technique which does not

integrate the regional rock physics or geological knowl-

edge. This fact will be obvious if we do the thought

experiment of asking what happens when the seismic

data have poor signal to noise ratio. We assert that the

use of Bayesian model-based inversion techniques

should become far more widespread once the first

mentioned obstacle above is overcome.

We do not presume in this paper to offer even a

partial critique of non-model based inversion techniques

from a Bayesian point of view: the reader will be able to

do this for themselves after consideration of the methods

and principles outlined later. The aim of this paper is

rather to introduce a new open-source software tool
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Delivery for Bayesian seismic inversion, and demon-

strate how this code implements a model-based Bayesian

approach to the inversion problem. The software

described in this paper is a trace-based inversion routine,

and is designed to draw stochastic samples from the

posterior distribution of a set of reservoir parameters

that are salient for both reservoir volumetrics and

geophysical modelling. The exposition will cover the

choice of the model parameters, construction of the

prior model, the development of the forward seismic

model and the associated likelihood functions, discuss

the mapping of the posterior density, and sketch the

methods used for sampling stochastic realisations from

the posterior density. The latter involves use of

sophisticated Markov Chain Monte Carlo (MCMC)

techniques for multiple models that are relatively new in

the petroleum industry.

The main content of the paper is laid out as follows; in

Section 2 the overall framework and design of the

inversion problem is outlined. Section 2.1 describes the

basic model and suitable notation, Section 2.2 outlines

the construction of the prior model, and Section 3

describes the forward model and associated likelihood.

Section 4 covers the problems of mode mapping and

sampling from the posterior. An outline of the software

is provided in Section 5: it is released under a generic

open-source licence rather like the popular GNU and

open-BSD style licenses. A discussion of a suite of

example/test cases is given in Section 6, and conclusions

are offered in Section 7.
2. Outline of the model

The inversion routine described in this paper is a

trace-based algorithm, designed to operate in a comput-

ing environment where a local seismic trace (usually

post-stack, post-migration) in Seismic Unix (SU) format

Cohen and Stockwell, 19981 is piped to the routine in

conjunction with a set of parameters describing the local

prior model, also in SU format. Stochastic realisations

are then drawn from the posterior and written out, also

in SU format. The details of these formats are discussed

in Section 5. Inverting on a trace-by-trace basis amounts

to an assumption that the traces are independent, and

this can be guaranteed by decimating the seismic data to

a transverse sampling scale equal to the longest

transverse correlation appropriate for the local geology.

Spacings of a few hundred metres may be appropriate.

Working with independent traces has the great advan-

tage that the inversion calculation is massively paralle-
1Cohen, J.K., Stockwell Jr., J., 1998. CWP/SU: Seismic Unix

Release 35: a free package for seismic research and processing.

Center for Wave Phenomena, Colorado School of Mines,

http://timna.mines.edu/cwpcodes.
lisable, and the computation may be farmed out by

scatter–gather operations on cluster systems. Finer scale

models may then be reconstructed by interpolation if

desired.

Inversion calculations on systems with inter-trace

correlations are difficult to sample from rigorously.

Sketches of a suitable theory are contained in Eide

(1997), Eide et al. (2002), Abrahamsen et al. (1997),

Huage et al. (1998) and Gunning (2000), from which we

offer the following summary. If the variables to be

inverted are jointly multivariate Gaussian, some analy-

tical work can be done which yields a sequential trace-

based algorithm, but the matrix sizes required to

account for correlations from adjacent traces are very

large. Models which use non-Gaussian models for

distributing facies (e.g. the indicator model used in

Gunning (2000)) require methods that involve multiple

inversions over the whole field in order to develop

certain necessary marginal distributions. These calcula-

tions are very demanding, even for purely multi-

Gaussian models.

From another point of view, the sheer difficulty of

rigorously sampling from inter-trace correlated inver-

sion problems is the price of modelling at a scale finer

than the transverse correlation length of the sediments

(and/or surfaces) of interest, which is commonly several

hundred metres or more. We know from the Nyquist

theorem that any random signal can be largely

reconstructed by sampling at the Nyquist rate corre-

sponding to this correlation length, and intermediate

values can be recovered by smooth interpolation.

This is a strong argument for performing inversion

studies at a coarser scale than the fine scale (say 10–

30 m) associated with the acquisition geometry. The

choice of the transverse sampling rate depends also on

the form of the transverse correlation dependence, since,

e.g. smooth surfaces are better reconstructed by inter-

polation than noisy ones. This requires some judgement.

Possible correlation lengths appropriate to various

geological environments are discussed in Deutsch

(2002).

By assuming that the inter-trace correlation is

negligible, the inversion can proceed on an independent

trace basis, and the incorporation of non-linear effects

like fluid substitution, and discrete components of the

parameter space (what type of fluid, presence or absence

of a layer, etc.) become computationally feasible. In

short, the correct sampling from systems with inter-trace

correlations is probably only possible in systems with

fully multi-Gaussian distributions of properties, but

such a restriction is too great when we wish to study

systems with strong non-linear effect like fluid substitu-

tion and discrete components like layer pinchouts or

uncertain fluids. The latter, more interesting problems

only become possible if we reduce the transverse

sampling rate.

http://timna.mines.edu/cwpcodes
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The model used in this inversion is somewhat coarser

than that commonly used in geocellular models. At each

trace location, the time-region of interest is regarded as a

stack of layers, typically a metre to several tens of metres

in size. Each layer is generically a mixture of two ‘‘end-

member’’ rock types: a permeable reservoir member,

and an impermeable non-reservoir member. the balance

of these two is determined by a layer net-to-gross ðNGÞ;
and the internal structure of mixed layers ð0oNGo1Þ is
assumed to be finely horizontally laminated, so acoustic

properties can be computed using an effective medium

theory appropriate for this assumption. Seismic energy

reflects at the boundaries between layers, producing a

surface signal that may be synthetically computed, given

an incident wavelet and all the requisite rock properties.

2.1. Description and notation of the local layer model

At the current trace location, the set of rock layers in

the inversion region is fundamentally modelled in time

rather than depth. The depth d enters as a relatively

weakly controlling parameter of the rock properties, but

time is a fundamental variable in terms of computing

seismic responses, so is the better choice of variable for

the basic parameterisation.

Models in depth are more fundamentally useful for

reservoir decision making, but we adopt a flow wherein

depth models can be created from any time model by a

simple post-processing step. Depth constraints can take

the form of thickness constraints or absolute depth

constraints, and both of these can be applied either

through the prior parameters or the isopach criterion we

discuss later. Either way, the generation of depth models

will require the specification of a reference layer, from

which all layer depths will be hung or supported as

required. This scheme ensures that depth and time

models are mutually consistent.

The model consists of Nc layers, with ti the top of

layer i: Layer i is bounded by the times ðti; tiþ1Þ; i ¼
1yNc: An additional parameter, tbase; is required to
m = {ttop, NG, φR, vp,R, vs,R, ρNR, vp,NR, vs,NR, ρb,vp,b,ρh,vp,h,Sh}
Model parameters per layer:

R = reservoir rocks

NR = impermeable rocks

b = brine
h = hydrocarbon

Full suite of model parameters:

M = {m1,m2,m3,...}

Fig. 1. Schematic of local layer-based model and its notation. For desc

sequence and synthetic seismic are part of forward model of Section
specified the bottom of the model. Fig. 1 shows a

cartoon of the model.

Each layer is modelled as a mixture of two finely-

laminated end-member rock types; a permeable member

like sand or carbonate, and an impermeable member,

such as shale or mudstone. The subscript f is used

generically to denote these facies, but also s for the

permeable member (think ‘‘sand’’) and m for the

impermeable (‘‘mud’’). The net-to-gross NG specifies

the ratio of permeable to impermeable rock by volume.

Pure shales or other impermeable rocks can be modelled

by NG ¼ 0: Hydrocarbons may be present only in the

permeable members of the laminated mixture.

The properties of permeable rocks that we explicitly

model are the p-wave velocity vp;s; the shear velocity vs;s;
and porosity fs; but for impermeable members we use
vp;m; vs;m; and density rm: Facies are assumed isotropic.

These rock properties are in general controlled by a

loading curve which depends primarily on depth but

also possibly a low-frequency interval velocity (LFIV)

(derived perhaps from the migration), as explained in

Section 2.2.3.

Permeable members that are susceptible of fluid

substitution will also require knowledge of the dry

matrix grain properties, and saturations, densities and p-

wave velocities of the fluids undergoing substitution.

For a particular rock type, the grain properties are taken

as known, but the fluid saturations, densities and

velocities can form part of the stochastic model.

The set of parameters describing the full acoustic

properties for layer i; bounded by times ti�1; ti; with
hydrocarbon h present, is then

m ¼fd;LFIV;NG;fs; vp;s; vs;s; rm; vp;m; vs;m;

rb; vp;b; rh; vp;h;Shg; f ¼ s;m; ð1Þ

at each trace. An i subscript is implicit for all quantities.

If the layer is a pure impermeable rock ðNG ¼ 0Þ; this
simplifies to

m ¼ fd ;LFIV;NG; rm; vp;m; vs;mg: ð2Þ
tt

Reflection coefficients Synthetic seismic

shale

shale

shale

oil-filled laminated sand

brine-filled laminated sand

brine-filled laminated sand

ription of model parameters see main text. Reflection coefficient

3.
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The union of these parameters with the layer times ti

(and the final bottom-layer base time tbase) then forms

the full model vector of interest. Since the times are the

dominant variables, it is convenient to arrange them to

occur first in the full model vector, so this is assembled

as

m ¼ft1; t2;y; tNc ; tNc ;base;mlayer-1;mlayer-2;y

mlayer-Nc ;A;Bg: ð3Þ

The extra stochastic factors A;B affect the synthetic

seismic and are explained in Section 3.1.4.

An additional feature is that some parameters may be

common to several layers (e.g. in many cases the LFIV is

an average across many layers), so the underlying model

vector will map all duplicate instances to the one

variable (so, e.g. there may be only one LFIV in the

overall model vector).

Also, it is sometimes useful to ‘‘synchronise’’ the rock-

matrix properties between two layers, so that if they

have the same end-members, acoustic contrasts at the

interface must be entirely due to fluid effects. In this

case, the underlying parametrisation will map all rock-

matrix affecting parameters in the lower layer to those of

the layer above, and remove all redundancies in the

model vector.

2.2. Construction of the prior

2.2.1. Layer times

Before inversion, the times ti are not known precisely,

but are modelled as stochastic variables with prior

distributions Nð%ti; s2ti
Þ: The mean and standard deviation

are estimated from horizon picking and approximate

uncertainty estimates (e.g. a half-loop or so may be

chosen for the sti
). The prior distribution on layer times

is supplemented by an ordering criterion which says that

layers cannot swap:

tiXti�1; ð4Þ

so the prior for the layer times is actually a product of

truncated Gaussians with delta functions at the end-

points absorbing the mis-ordered configurations. A

typical scenario is that the top and bottom of a large

packet of layers have been picked reasonably accurately,

but the time location of the intermediate surfaces is not

well known.

The truncation rules allow the useful possibility of

pinchouts. For example, layer 2 may disappear if we

have t3 ¼ t2; in which case the interface at this

time comprises a contrast between layer 1 and layer 3

properties, providing t3 > t1: Modelling pinchouts

in this way then requires a specific algorithm for

determining where the pinchouts occur from a given

set of (untruncated) layer times ti: We have used this
scheme:
(1)
 Form a sort order based on the layer prior time

distributions uncertainties sti
(sorting in increasing

order), and from the top layer down as a secondary

sort order if some sti
’s are identical.
(2)
 From the set of candidate time samples ftig (which
will not in general satisfy (4)), proceed to fix the

times in the sort order above, truncating values to

preserve the ordering criterion (4) as we proceed.

For example, if the sort order is {1, 4, 2, 3}, and we

have a set t1ot4ot3ot2; this will end up truncated

at t1; ðt2 ¼ t4Þ; ðt3 ¼ t4Þ; t4:
This recipe is designed to allow the ‘‘better picked’’

horizons higher priority in setting the layer boundary

sequence.

2.2.2. Prior beliefs about hydrocarbons

The modeller will have formed beliefs about the

probability of certain kinds of hydrocarbons in each

layer, informed by non-seismic sources such as pressure

data or resistivity logs. A relative prior probability is

assigned to each hydrocarbon type in each layer on this

basis. Specifically, each layer i may bear fluids; oil (o),

gas (g), brine (b), or low-saturation gas (l). The modeller

must specify the prior probabilities of each of these

phases, on a layer basis, as Fio;Fig;Fib;Fil; respectively,
with Fio þ Fig þ Fib þ Fil ¼ 1:
Depending on the likely hydraulic communication

between layers, the hydrocarbons allowed to be present

in the permeable layers may be subjected to a density-

ordering criterion, e.g. oil is not permitted above gas in

two adjacent permeable layers. At least three types of

density ordering rule can be envisaged:
(1)
 None: any fluids are allowed in any permeable layer.
(2)
 Partial: fluids are density ordered for all adjacent per-

meable layers not separated by an impermeable layer.
(3)
 Full: fluids are density ordered across the entire

reservoir model, regardless of whether there are

impermeable layers separating permeable ones.
The set of possible fluids in each layer (as implied by

the prior probabilities) are combined with a rule for

density ordering to then enumerate a discrete set of

possible fluid combinations k ¼ 1yNF : For example, a
two-layer system under ordering rule Eq. (3), where it is

known that gas (and low-saturation gas) cannot occur

(Fig ¼ Fil ¼ 0), may have the allowable set {(brine,

brine):(oil, brine):(oil, oil)}, so NF ¼ 3: Suppose the

fluid-combination k corresponds to the set of fluid labels

fikAfb; l; g; og; i ¼ 1yNc: Then the prior probability of

this fluid-combination is taken to be

pk ¼
Q

i Fi;fikPNF

k0¼1

Q
i Fi;fik0

: ð5Þ
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Note that in multi-layer systems, this makes the

marginal prior probability of obtaining a certain fluid

in a given layer quite different to the prior probability

specified on a layer basis, simply because of the ordering

criterion. For example, in the two-layer problem

described above, if the prior probability of oil in each

layer had been specified as, say, 0:6; the three combina-
tions would have probabilities proportional to 0:42;
0:6	 0:4; 0:62; respectively, or 0:21; 0:316; 0:474 after

normalisation, so the post-ordering prior probability of

oil in layer 2 is 0:474; and in layer 1 is 0:316þ 0:474 ¼
0:79: In subsequent discussions, the prior probability of

each distinct fluid combination k enumerated in this way

is denoted pk:
Supplementing this fluid categorisation, it is

desirable also to model the fluid saturations Sif ; f ¼
o; g; b; l for each fluid type. The two phases present are

taken as brine (b) and hydrocarbon (o, g. l). The

petrophysicist can assign Gaussian stochastic priors

Sif BNðSif ; sSif
Þ; truncated outside ½0; 1� to these satura-

tion parameters, based on regional knowledge. (The

algorithms in this code treat truncated Gaussian

distributions as a mixture of a true truncated Gaussian

plus delta functions at the truncation points, of weight

equal to the truncated probability. This has the

advantage of giving non-vanishing probability to certain

physically reasonable scenarios, like NG ¼ 0; or a layer

pinchout).

2.2.3. Prior information about rock properties

Net-to-gross: The net-to-gross prior distribution is

taken as NðNG;s2NG
Þ; truncated within ½0; 1�: The

mean and standard deviation of this distribution

can be determined by consultation with the geologist.

A broad prior may be used to reflect uncertain

knowledge.

Trend curves: From logging information in wells

drilled through intervals deemed to be representative

of the rock behaviour in the region to be inverted,

a set of regression relationships for useful acoustic

properties in all the facies is developed. The points

used in these local ‘‘trend curves’’ are computed

using a known reference fluid (typically, a brine) in

place of the in situ fluid, and the basic acoustic

properties ðr; vp; vsÞ of these reference fluids

have to be established (the reference fluid may vary

with facies for various reasons). These ‘‘reference-fluid’’

properties may also be slightly uncertain, with

normal distributions modelling their variation about a

mean.

The trend curves are a set of rock-matrix velocities

(p-wave, s-wave) vpf ; vsf ; and density rf (or porosity ff )

regressions for all end-member rocks. For reservoir-

members, the porosity is used in preference to the
density, and the set of regressions is

ff ¼ ðAf þ Bfvpf Þ7sff ;

vsf ¼ ðAvs þ Bvsvpf Þ7ssf ;

vpf ¼ ðAvp þ Bvpd þ CvpLFIVÞ7spf ; ð6Þ

where d ¼ depth: Density is computed from

rsat ¼ ð1� fÞrg þ frfluid; ð7Þ

for permeable members. The last equation models vp as

linear in d ¼ depth (compaction, etc.) and linear in the

low-frequency interval velocity (LFIV); a local mean

vertical p-wave velocity obtained from pure seismic data

like VSP, moveout or stacking considerations. Such a

regression can capture most stratigraphic, compaction

and overpressure effects.

For impermeable rocks, the porosity is of no direct

interest, and the density is regressed directly on vpf using

a Gardner–Gardner–Gregory (GGG) type relationship

log rf ¼ ðlog Ar þ Br log vpf Þ7srf or

rf ¼ Arv
Br

pf 7srf ;

vsf ¼ ðAvs þ Bvsvpf Þ7ssf ;

vpf ¼ ðAvp þ Bvp 	 depthþ Cvp 	 LFIVÞ7spf : ð8Þ

Typically, BrE0:25: Since the range of densities and

velocities in a single rock type is not large, this GGG-

type regression can also be cast as a linear regression

over a suitable range.

The regression errors (spf ; ssf ;y) used in these

relationships are the prediction errors formed from

linear regression studies, which yield t-distributions for

the predictive distribution. We approximate this result

by taking the prior to be of Normal form, with variance

set to the regression variance. For example, the prior for

vp;f is NðAvp þ Bvpd þ CvpLFIV; s
2
pf Þ: This approxima-

tion is exact in the limit of large data.

2.2.4. Fluid properties

We have also, from measurements or prior informa-

tion, Gaussian prior distributions for the fluid p-wave

velocities Nðvp;svp Þ and densities Nðr; srÞ (from which

the bulk moduli distribution can be computed) for the

reference brines and any possible hydrocarbons.
3. The forward model

The Bayesian paradigm requires a likelihood function

which specifies how probable the data are, given a

particular model. This requires calculation of a synthetic

seismic trace from the suite of layers and their proper-

ties, and forming the likelihood by comparing the

seismic data and the synthetic seismic. The forward

seismic model is a simple convolutional model, which

treats layers as isotropic homogeneous entities with
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effective properties computed from the successive

application of Gassman fluid substitution in the perme-

able rocks and Backus averaging with the impermeable

rocks.

There may be additional constraints in the form of

isopach specifications, where a particular layer-thickness

is known to within some error by direct observation, or

other source of knowledge. The isopach constraint,

being independent from the seismic, forms its own

likelihood, and the product of the synthetic seismic

likelihood and the isopach likelihood form the overall

likelihood for the problem.

3.1. Computing the synthetic seismic

3.1.1. Rock mixtures

When two different isotropic rocks are mixed at a fine

(sub-seismic resolution) scale with strong horizontal

layering, it is well known that the effective acoustic

properties of the mixture can be computed using the

Backus average (Mavko p. 92). This assumes that the

wavelengths are long compared to the fine-scale

laminations represented by the net-to-gross measure.

The standard formulae are

1

Meff
¼

NG

Mpermeable
þ

1� NG

Mimpermeable
; ð9Þ

where M can stand for either the p-wave ðMÞ or shear
ðmÞ modulus ðmeff ¼ reffv

2
s;eff ; Meff ¼ Keff þ 4

3
meff ¼

reffv
2
p;eff Þ; and the effective density is

reff ¼ NGrpermeable þ ð1� NGÞrimpermeable: ð10Þ

3.1.2. Fluid substitution in permeable rocks

When the saturation of a particular hydrocarbon is

not trivially 0 or 1, we take the hydrocarbon and brine

phases to be well mixed on the finest scale, so the fluid

can be treated as an effective fluid (see Mavko et al.,

1998, p. 205) whose properties are computed using the

Reuss average

K�1
fluid ¼

Six

Kix

þ
1� Six

Kib
: ð11Þ

When the effective fluid replaces brine in the pore space,

the saturated rock has effective elastic parameters that

are computed from the usual low-frequency Gassman

rules (Mavko et al., 1998): viz

Ksat

Kg � Ksat
¼

Kdry

Kg � Kdry
þ

Kfluid

fsðKg � KfluidÞ
: ð12Þ

The Mpermeable in the Backus relation (9) will be the p-

wave modulus for permeable rock after fluid substitu-

tion via Gassman (only the permeable end-member will

undergo fluid substitution). Here Kdry is the dry rock

bulk modulus, Kg is the bulk modulus of rock mineral

grains, Kfluid the bulk modulus of the substituted fluid

(gas/oil/brine/low-saturation gas), and Ksat the effective
bulk modulus of the saturated rock. The shear modulus

m is unchanged by fluid substitution.

Under replacement of the reference fluid b by a fluid fl

(a two-phase mix of brine and hydrocarbon h), the

Gassman law, assuming no pressure effects on the dry

modulus Kdry; can be written as

Ksat;fl

Kg � Ksat;fl
�

Ksat;b

Kg � Ksat;b

¼
Kfl

fsðKg � KflÞ
�

Kb

fsðKg � KbÞ
: ð13Þ

3.1.3. Typical computation sequence

A typical computation sequence for computing the set

of effective properties for a laminated, fluid-substituted

rock layer would run as described in Appendix 1 on the

IAMG server (http://www.iamg.org/CGEditor/in-

dex.html). Prior to computing the synthetic seismic,

the effective properties of all the layers must be

computed following this recipe.

3.1.4. The synthetic seismic and seismic-likelihood

Given a wavelet w; an observed seismic S; and an

estimate of the seismic noise power s2s ; we can use the

reflectivities R associated with effective-property con-

trasts between layers to construct the synthetic seismic

appropriate to any particular stack. The synthetic is

taken to be

Ssyn � w�R; ð14Þ

where we use an FFT for the convolution, and w and R

will be discretised at the same sampling rate Dt as the

seismic data set S for the trace. The set of delta functions

in R are projected onto the discretised time-grid using a

4-point Lagrange interpolation scheme (Abramowitz

and Stegun, 1965) based on the nearest four samples to

the time of a spike. This ensures that the synthetic

seismic has smooth derivatives with respect to the layer

times, a crucial property in the minimisation routines

that are described in Section 4.1.

Available data traces S may be near or far-offset (or

both), and an appropriate wavelet w will be provided for

each. The P–P reflection coefficient for small layer

contrasts and incident angles y is (from the small-

contrast Zoeppritz equation for RppðyÞ; expanded to

Oðy2Þ (Mavko p. 63))

Rpp ¼
1

2

Dr
r

þ
Dvp

vp

� �

þ y2
Dvp

2vp
�
2v2s ðDr=rþ 2Dvs=vsÞ

v2p

 !
ð15Þ

with

r ¼ ðr1 þ r2Þ=2; ð16Þ

vp ¼ ðvp;1 þ vp;2Þ=2; ð17Þ

http://www.iamg.org/CGEditor/index.html
http://www.iamg.org/CGEditor/index.html
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vs ¼ ðvs;1 þ vs;2Þ=2; ð18Þ

Dr ¼ r2 � r1; ð19Þ

Dvp ¼ vp;2 � vp;1; ð20Þ

Dvs ¼ vs;2 � vs;1 ð21Þ

and layer 2 below layer 1. All properties in these

formulae are effective properties obtained as per

electronic (electronic appendix 1). The coefficient of y2

is usually called the AVO gradient.

Due to anisotropy and other effects related to

background AVO rotation (Castagna and Backus,

1993), some corrections to this expression may be

required, so the reflection coefficient will take the form

RppðA;BÞ ¼
A

2

Dr
r

þ
Dvp

vp

� �

þ By2
Dvp

2vp
�
2v2s ðDr=rþ 2Dvs=vsÞ

v2p

 !
; ð22Þ

where the factors A and B may be stochastic, typically

Gaussian with means close to unity and small variances:

ABNð %A; sAÞ; BBNð %B;sBÞ:
Explicitly, y2 for a given stack is obtained from the

Dix equation. The stack has average stack velocity Vst;
event-time Tst and mean-square stack offset

/X 2
stS ¼

ðX 3
st;max � X 3

st;minÞ

3ðXst;max � Xst;minÞ
; ð23Þ

from which the y2 at a given interface is computed as

y2 ¼
v2p;1

V4
stT

2
st=/X 2

stS
: ð24Þ

The likelihood function associated with the synthetic

seismic mismatch is constructed as

Lseis ¼ exp �ferror
X

error-sampling points

ðSsyn � SÞ2=2s2s

 !
;

ð25Þ

where the range of the error-sampling points is

computed from the prior mean-layer time range and

the wavelet characteristics as per Fig. 2. Within this

range, the points used in the error sum are spaced at the

maximum multiple of the seismic sampling time pDt

which is smaller than the optimal error sampling time

DTs derived in electronic Appendix 2 (i.e. pDtpDTs).

The correction factor ferror � pDt=DTs; is designed to

recover the error that would be obtained if the error

trace were discretised at exactly DTs: The signal-to-noise
ratio SN is implied by the noise level ss supplied by the

user, with typically SNE3:
If both normal-incidence (small y) and far-offset

seismic data are available (‘‘large’’ y), we model the
overall likelihood as a product of likelihoods for

normal-incidence and far-offset angles.

The stack information required by the likelihood

model thus comprises the parameters Vst (stack velocity

to event), Xst;max (far offset), Xst;min (near offset), and Tst

(event time), a wavelet appropriate for the stack, and the

noise level ss:

3.2. Isopach constraints

For certain layers there may be a constraint on the

thickness which is obtained from well data, or kriged

maps of layer thicknesses constrained to well data. Let

j ¼ 1;yNt label the layers on which such a constraint is

imposed. The thickness of the layer must match a known

thickness DZj ; within an error sDZj
specified. This can be

represented in a likelihood function

Liso ¼ exp �
X

j

ðvj;p;eff ðtj � tj�1Þ � DZjÞ
2

2s2DZj

 !
: ð26Þ

Similarly, constraints on the net-to-gross may be

imposed by kriging net-to-gross estimates from well

data. These will then be used to populate the prior-

model traces with a spatially variable net-to-gross.
4. Sampling from the posterior

The posterior distribution for the inversion problem is

a simultaneous model selection and model sampling

problem. The selection problem is primarily that of

choosing a model from the suite of models associated

with the fluid combinations described in Section 2.2.2.

For a particular combination k of fluids in the perme-

able layers, the model vector mk can be constructed from

the union of all relevant parameters in Eq. (3). Hydro-

carbon terms are omitted if the layer contains brine. Any

fixed or irrelevant parameters are discarded. Different

possible fluid combination will then yield model vectors

mk of different dimension.

A further model-selection problem can also emerge

from strong multimodality that may appear in the

posterior for any particular fluid combination. If, for a

fixed fluid combination, the posterior contains strongly

isolated modes, sampling from this density is best

approached by regarding the modes as separate models

and incorporating them into the model-selection pro-

blem.

Model-selection problems can proceed in two ways.

The first is to seek the marginal probability of the kth

model PðkjdÞ by integrating out all the continuous

variables mk in the problem and then drawing samples

via the decomposition Pðk;mk jdÞ ¼ Pðmk jk; dÞPðkjdÞ:
The problem is to find reliable estimates of PðkjdÞ when
the necessary integrals cannot be done analytically.
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Methods to form such estimates using MCMC methods

are described in Raftery (1996), and tend to focus on

harmonic means of the likelihood computed with

MCMC samples drawn from the conditional

Pðmk jk; dÞ: Preliminary experiments have shown some

difficulty in stabilising the various estimators described

by Raftery. The best estimator we have found is the full

Laplace estimator, based on the posterior covariance

matrix obtained by Newton updates at the mode. This

forms the basis of an ‘‘independence sampler’’, whose

implementation details are described in electronic

Appendix 4.

The second method samples for the full posterior

Pðk;mk jdÞ by constructing a hybrid MCMC scheme that

make jumps between the various models as well as

jumps within the continuous parameter space of each

model. Such methods are variously described as model
jumping methods, e.g. Andrieu et al. (2001), Phillips and

Smith (1996); we implement the methods described by

Adrieu.

For a fixed fluid combination k (of prior probability

pk), the posterior distribution of the model parameters

mk should clearly be proportional to the product of the

prior distributions with all the applicable likelihoods:

Pðmk jSÞBLseisðm0
k jSÞLisoðm0

kÞPðmkÞ; ð27Þ

where the full prior is

PðmkÞ ¼
pk

ð2pÞdk=2jCk j1=2
exp �

1

2
mk �mkð ÞT

�

	 C�1
k ðmk �mkÞ

�
: ð28Þ

Note that the likelihood functions are evaluated for the

model m0
k obtained from mk after applying time ordering
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(Section 2.2.1) and truncation of any values to their

appropriate physical range of validity (e.g. 0pNGp1).

In a great majority of cases in realistic models, m0
k ¼ mk:

The prior mean vector mk and inverse covariance C�1
k

can be built directly from the description of the prior in

Section 2.2.

Efficient sampling from the posterior will require

location of all the feasible modes for a particular fluid

combination, plus an estimate of the dispersion at each

mode. The latter is usually taken as the local covariance

associated with a Gaussian approximation to the local

density.

4.1. Mode location and local covariance

Location of the modes is usually performed by

searching for minima of the negative log-posterior

starting from strategic points. For each fluid combina-

tion, the full model vector m can easily have dimension

of d ¼ Oð50Þ or more, so this minimisation is quite

demanding. The log-posterior surface is smooth for all

parameters except where a layer pinches out, since the

disappearing layer causes an abrupt discontuity in the

reflection coefficient. Such problems can be tackled with

variable metric methods like BFGS minimisers specially

adapted to detect solutions that lie along the lines of

discontinuity (typically at some tiþ1 ¼ ti). Still, very

best-case d-dimension minimisation usually requires

Oðd2Þ function evaluations, with the coefficient being

in the order of 10–100. Observe also that the function

evaluation is a synthetic seismic (over Nt samples), plus

prior, plus isopach, so the work count for this is Oðd2 þ
Nt logðNtÞÞ; which is typically Oð103Þ flops. The code

actually uses an adaptation of Verrill’s java UNCMIN

routines (Koontz and Weiss, 1982), which implement

both BFGS and Hessian-based Newton methods.

This accounting shows that the overall minimisation,

performed over all d parameters will be quite slow. In

practice, some of the parameters affect the posterior

much more strongly than others. Layer times, p–

velocities and densities have strong effects, whereas,

e.g. hydrocarbon saturations have rather weak ones.

This observation leads to a scheme wherein the

minimisation is carried out over a subset of important

parameters (say 2 or 3 per layer), and the remainder are

estimated after the minimisation terminates using a

sequence of Newton iterates as follows.

4.1.1. Newton updates

If the prior distribution for mk is multi-Gaussian, with

negative log-likelihood �logðPðmkÞÞBðmk � %mÞC�1
m

ðmk � %mÞ; and the likelihood function is of form

logðLðmjDÞÞB� 1
2
ðf ðmkÞ � yÞT:diagðs�2i Þ:ðf ðmkÞ � yÞ;

ð29Þ
then the posterior mode *m can be estimated by

linearising f ðmÞ about an initial guess m0 using the

standard inverse theory result (Tarantola, 1987)

X ¼ rf ðm0Þ; ð30Þ

C̃m ¼ ðXTC�1
D X þ C�1

m Þ�1; ð31Þ

*m ¼ C̃mðXTC�1
D ðy þ Xm0 � f ðm0ÞÞ þ C�1

m %mÞ; ð32Þ

where CD ¼ diagðs2i Þ: Here the f ðmÞ will be read from

seismic (Eq. (25)) or isopach likelihoods (Eq. (26)).

The updates encountered in the code are all cases

where the error covariance is diagonal, so the

formulae are more simply stated in terms of the scaled

residuals e:

eðm0Þ ¼ C
�1=2
D ðf ðm0Þ � yÞ; ð33Þ

X̃ � reðm0Þ; ð34Þ

d ¼ X̃m0 � eðm0Þ; ð35Þ

C̃m ¼ ðX̃TX̃ þ C�1
m Þ�1; ð36Þ

*m ¼ C̃mðX̃Tdþ C�1
m %mÞ: ð37Þ

The gradient X̃ is evaluated by finite differences, and the

scheme can be iterated by replacing m0’ *m at the end. It

converges quadratically to the true mode if the path

crosses no layer pinchouts. Typically, after minimisation

using, say, BFGS methods over the dominant para-

meters in m; only a few Newton iterates are required to

get decent estimates of the remaining parameters, and

the posterior covariance matrix C̃m comes along for free.

4.2. Mode enumeration

Incorporation of the isopach likelihood alone will

likely yield an approximately quadratic log-posterior

function, which has a single mode. This mode may also

be quite tight, especially at the wells. Conversely, the

synthetic seismic likelihood is likely to be strongly

multimodal, especially in the time parameters.

For this reason, we always perform a small set of

Newton updates (say 5) to the prior based on the

isopach likelihood before commencing a minimisation

step for the entire posterior. The ‘‘partial-posterior’’

formed from the product of the prior and isopach

constraint will be approximately multi-Gaussian, and

the mode and covariance of this distribution are then

used to choose starting points for a set of subsequent

minimisation calls. The subset of parameters used in the

modified BFGS minimisation routines are typically the

layer times ti; the impermeable layer p-velocities vp and

the net-to-gross NG:Other combinations are conceivable
and perhaps better. The initial starting values of the non-

time parameters are taken from the ‘‘partial-posterior’’
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followed by global Newton steps, yielding a set of local minima

in full parameter space.
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mean, and a set of starting times are assembled as per

the description in electronic Appendix 3. A run of

subspace minimisations looping over this set of starting

configurations will yield a set of points hopefully in the

vicinity of global modes. Duplicates are eliminated. Fig.

3 indicates how the sequence of dispersed starting

points, subspace minimisation, and global Newton

methods converge to the desired separate modes.

The remaining candidate points then undergo a set of

Newton updates (about 10) for the full model. Subse-

quently, any modes that look wildly implausible are

eliminated (the remaining freedom in the frozen para-

meters is unlikely to redeem a bad loop-skip). If a mode

is acceptable, the Newton-updated mean and covariance

are stored, along with a measure of the mode weight

such as the likelihood at the peak of the mode, and the

Laplace-estimator weight (Eq. (59)) described in Appen-

dix 4. Diagnostic routines capable of drawing graphs of

the log posterior centred at the mode are useful in

checking the character of the mode and the adequacy of

the Gaussian approximation.

In cases where the seismic likelihood value obtained

after these local optimisations looks poor (or for other

reasons), a global optimisation step may be initiated

operating on the subvector of layer times, with non-time

properties fixed at their prior+isopach means. The

initiation conditions for this step are designed to detect

trapping of the BFGS/Newton optimisers in poor local

solutions. The globally optimal t values are then used as

starting points for the Newton optimiser. The global

optimiser uses the Differential Evolution genetic algo-

rithm of Storn and Price (1997).
4.3. Sampling

The overall Markov chain for the sampling is

generated by a kernel that flips rapidly between two

kinds of proposals: (a) jumps to different models, and

(b) jumps within the current model. Currently the

scheme chooses one of these moves with a 50%

probability at each step, and performs a within-model

jump or model-jump according to the schemes described

below. This is the mixture hybrid-kernel of Section 2.3 in

Brooks (1998). Special ‘‘moves’’ for unusual situations

can also be devised, and are generally safe to use

providing they are drawn independently of the current

state of the chain.

4.3.1. Within-model jumps

For single-model d-dimensional problems that have

smooth densities, a Metropolis–Hastings sampler that is

both efficient and robust is the scaled reversible-jump

random-walk sampler (RWM) described in Chapter 11

of Gelman et al. (1995). In this sampler, the jumps are

drawn from the distribution qðmnewjmoldÞ ¼
Nðmold; s2CÞ; where C is the estimated covariance at

the mode, and s is a scale factor set to s ¼ 2:4=
ffiffiffi
d

p
: For

multi-Gaussian distributions, this scale factor leads to

optimal sampling efficiency for this class of samplers

(acceptance rates near 0:23), and the sampling efficiency

is then about 0:3=d: The proposals mnew drawn from

qðmnewjmoldÞ are then time-ordered and truncated if

necessary (as per Section 4) to produce m0
new and then

used to compute the full posterior density

PðmnewjSÞ ¼ Lseisðm0
newjSÞLisoðm0

newÞPðmnewÞ: ð38Þ

If the posterior were perfectly multi-Gaussian, samples

could be drawn from an independence sampler (Brooks,

1998) using a Gaussian proposal density, which would

be 100% efficient since successive samples are indepen-

dent, but the assumption of a compact Gaussian

distribution for the proposal density in a Metropolis

technique will force undersampling of regions of the

posterior that may have thick tails. Such regions appear

reasonably likely when cross-sections of the log-poster-

ior are plotted as diagnostic output: significant non-

parabolicity is usually evident in the time-parameters

(see Fig. 4).

Hence, for random walks within a fixed model, we use

the RWM sampler where the covariance used is that

produced by the sequence on Newton updates at the

mode. The initial state is taken at the mode peak. Jumps

that produce an unphysical state are treated as having

zero likelihood. The acceptance probability for a jump

mold-mnew is the usual rule

a ¼ min 1;
PðmnewjSÞ
PðmoldjSÞ

� �
: ð39Þ
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Fig. 4. Series of log-posterior cross-sections taken through maximum-likelihood point found from optimisation step and sequence of

Newton updates. Cross-sections are shown for two parameters shown, in all relevant layers, over a range of two standard deviations as

computed from local covariance matrix. Near-Gaussian parameters will show symmetric parabolas with a rise of +2 at endpoints, but

non-Gaussianity is evidenced by skewed or a-symmetric profiles, most obvious in case of time parameters in this instance.
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Note that the actual proposal probability q does not

need to be evaluated, but the appropriate scaling for it is

crucial.

4.3.2. Model jumping

Jumps between models have to be made with care so

as to preserve reversibility. A notable feature of the set

of models to be sampled from is that a great many

parameters are common to all models (times, rock

parameters, etc.), and only the fluid characteristics
distinguish the models corresponding to different fluid

states. For example, if a jump involves introducing gas

into a layer, the model vector is augmented by the gas

velocity, saturation, and density (if they are not fixed).

The models are thus good examples of the nested

structures discussed in Andrieu et al. (2001), and the

algorithms below are simple instances of the methods

discussed in Section 3 of that paper.

Suppose the models m1 and m2 are partitioned into

components as m1 ¼ fm�
12;m

0
12g; m2 ¼ fm�

21;m
0
21g; the
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asterisk denoting common elements and the prime non-

common parameters (so m�
12 ¼ m�

21 is the same set). We

have estimates of the maximum likelihood model values

m1 ¼ fm�
12;m

0
12g and m2 ¼ fm�

21;m
0
21g from the sequence

of minimisation steps for each mode, and it is invariably

the case that the shared parameters will have different

values at each of these maximum-likelihood points. A

jump from model 1 to 2 is then performed by the

mapping

m2;new ¼ fm�
12;old þ ðm�

21 �m�
12Þ;m

0
21g; ð40Þ

where m0
21 is drawn from a suitable proposal distribution

q12ðm0
21Þ; which we usually take to be the prior for those

components, since the fluid parameters are uncorrelated

with the rest of the model in the prior:

q12ðm0
21Þ ¼

Y
new fluid components parameters j in model

pjðm0
21;jÞ:

ð41Þ

A reverse jump, from 2 to 1, would have invoked the

proposal probability q21ðm0
12Þ for the components of

model 1 not present in model 2. The jump from model 1

to 2 is then accepted with probability

a ¼ min 1;
pðm21Þq21ðm0

12Þ
pðm12Þq12ðm0

21Þ

� �
; ð42Þ

where pð�Þ is the full posterior density of Eq. (27),

including the dimension-varying terms in the prior.

In the thought-experiment limit that the likelihood

functions are trivially unity (we ‘‘switch’’ them off) this

jumping scheme will result in certain acceptance, as the

qijð�Þ densities will cancel exactly with corresponding

terms in the prior. The likelihoods are expected to be

moderately weak functions of the fluid properties, so

this seems a reasonable choice. Further, in many

practical scenarios, the fluid constants may be suffi-

ciently well known that they are fixed for the inversion,

in which case the models share all the parameters, and

the q terms disappear from Eq. (42).

The linear translation embodied in Eq. (40) is based

on a plausible assumption that the ‘‘shape’’ of the

posterior density for the common parameters remains

roughly the same across all the models, but the position

may vary. Corrections to this assumption can be

attempted by rescaling the mapping using scale-factors

estimated from covariance estimates—which introduces

a constant Jacobian term into Eq. (42)—but numerical

experiments have not shown that this embellishment

significantly improves the acceptance rates.

Mixing has generally been found to be very good

when jumps are performed between various fluid states

using this scheme. When multimodality in the posterior

due to loop-skipping occurs, mixing can be more

problematic, and the posterior samples should be

checked carefully to ensure mixing is adequate. Various
options for detecting and auto-correcting for this

problem, using decimation estimates computed from

the time-series in the Markov chain (Gelman et al., 1995,

Chapter 7), have been added to the code.
5. The software

The Delivery inversion software is written in java, a

design decision rather unusual in the context of

numerically intensive scientific software. It should run

on java implementations from 1.2 on. The advent of

hotspot and just-in-time (JIT) compiler technology has

made java a much more efficient language than in its

early days as a purely interpreted language (see the Java

Numerics website as an entry point Boisvert and Pozo,

2003.2 The core cpu demands in the code are (a) linear

algebra calls, for which we use the efficient CERN colt

library Hoschek, 20033 and (b) FFTs, for which we

provide a library operating on primitive double[ ] or colt

DenseDoubleMatrix1D arrays, and the former have

been demonstrated to be as fast as C on the platforms

we use.

On platforms with modern hotspot or JIT compilers,

the code is estimated to run somewhere within a factor

of 2–5 of the speed of a C++ implementation, and has

the advantage of being platform independent, free of

memory-management bugs, and has been simpler to

develop using the large suite of libraries now standard in

java 1.2 and its successors.

In practice, the inversion code will likely be run in an

operating system that allows piping of input and

output data in the form of SU streams, and the

attractive possibility of clustering the calculation means

that it will likely be run on some flavour of unix or

Linux.

Some explanation of the files required for input/

output and usage is given in Appendix 7. The inversion

is chiefly driven by an XML file that specifies the

necessary rock-physics, layer descriptions, and informa-

tion about the seismic. A quality schema-driven GUI

editor expressly developed for the construction of this

XML file is also available at the website: further details

are in the appendix.

The code is available for download Gunning, 20034

under a generic open-source agreement. Improvements

to the code are welcome to be submitted to the author. A

set of simple examples is available in the distribution.

http://math.nist.gov/javanumerics/
http://hoschek.home.cern.ch/~hoschek/colt/index.htm
http://hoschek.home.cern.ch/~hoschek/colt/index.htm
http://www.petroleum.csiro.au
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Fig. 5. (a) Truth case wedge model, (b) truth case seismic, (d) pre-inversion stochastic samples (i.e. drawn from prior distribution

only), (e) post-inversion samples (100 per trace), (c) p10; p50; p90 quantiles for layer times of wedge, and (f) p10; p50; p90 quantiles of

wedge thickness. Note how wedge layer time uncertainty increases to prior when wedge pinches out, as there is no longer a significant

reflection event to facilitate detection of this horizon: inverter does not care where horizon is, as long as it pinches out. Wedge thickness

(zero) is still well constrained though.

J. Gunning, M.E. Glinsky / Computers & Geosciences 30 (2004) 619–636632
6. Examples

6.1. Sand wedge

A simple but useful test problem is one where a wedge

of sand is pinched out by surrounding shale layers. This

is modelled as a three layer problem, where we

expect the inversion to force pinching-out in the

region-where no sand exists, if the signal-to-noise ratio

is favourable and the sand-shale acoustic contrast is

adequate.

In this example, the prior time parameters are

independent of the trace, so there is no information in

the prior to help detect the wedge shape. The internal

layer times have considerable prior uncertainty (20,

50 ms; respectively). Fig. 5 illustrates pre- and post-

inversion stochastic samples of the layers, displayed with
many realisations per trace. Here the noise strength is

about 1
4
of the peak reflection response when the wedge is

thick (i.e. away from tuning effects).

This test problem shows how the inverter can readily

unscramble tuning effects from rock-physics to produce

an unbiased inversion of a layer pinchout.

6.2. Net-to-gross wedge

Another useful test problem is where a slab of shaly

sand is gradually made cleaner from left to right across a

seismic section, and embedded in the mixing shale. As

the net-to-gross increases, the reflection strength im-

proves, and the posterior distribution of the net-to-gross

and layer thickness is of interest.

In this example, the only parameters that varies

areally is the mean net-to-gross: this is fixed to be the



ARTICLE IN PRESS

1.80

1.85

1.90

1.95

2.00

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a)

(b) (c)

(d) (e)

(f) (g)

p10
p10

p90

p90

p50p50

tim
e

(s
ec

s)

N
et

-t
o-

gr
os

s

Net-to-gross

N
ea

r
re

fle
ct

io
n

co
ef

fic
ie

nt

N
ea

r
re

fle
ct

io
n

co
ef

fic
ie

nt
N

et
-t

o-
gr

os
s

N
et

-t
o-

gr
os

s

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.2

0.4

0.6

0.8

1.0

PRIOR POSTERIOR

POSTERIOR

POSTERIORPOSTERIOR

POSTERIOR

1000
0

5

10

15

20

25

30

2000 4000 6000 8000 104

Iteration

trace number

trace number trace number

trace number trace number

Lo
g(

lik
el

ih
oo

d)

0.0 0.2 0.4 0.6 0.8
0.08

0.10

0.12

0.14

0.16

0.18

0.20

Fig. 6. (a) Truth case seismic for net-to-gross ðNGÞ wedge model, (b) pre-inversion (prior) spread of NG as show by p10, p50, p90

quantiles; truth- case shown dashed, (c) as per (b), but post-inversion. Inset (d) shows near-stack reflection coefficient variations, and

(e) associated samples of NG. Signal-to-noise ratio here is very favourable, with noise 1/10th of peak seismic response. Residual

uncertainty in NG is due to fact that there is also uncertainty in layer velocity variations. Seismic constrains primarily reflection

coefficient, but system indeterminacy will still allow appreciable variation in NG: Convergence and mixing of MCMC scheme is

illustrated for a highly non-informative prior NGBNð0:45; 0:72Þ on trace 8: (f) trace plot of log-likelihood, with early iterations

magnified, (g) trajectory of Markov chain walk for NG of layer 2 vs. its reflection coefficient at top.

J. Gunning, M.E. Glinsky / Computers & Geosciences 30 (2004) 619–636 633



ARTICLE IN PRESS
J. Gunning, M.E. Glinsky / Computers & Geosciences 30 (2004) 619–636634
same as the ‘‘truth-case’’ model, but has a (very broad)

prior standard deviation of sNG ¼ 0:3: Fig. 6 illustrates

pre- and post-inversion estimates of the net-to-gross

distribution parameters, superposed on the truth case.

This example is also used to demonstrate the conver-

gence of the MCMC sampler, for which we show some

characteristic plots of the random walk for the inversion

on trace 8. Here the prior was loosened considerably to

NGBNð0:45; 0:72Þ: The chains are always started at the

maximum likelihood point, so ‘burn-in’ times are

generally very short.

This test problem shows that the inverter produces a

relatively unbiased inversion for the net-to-gross, but

subject to increasing uncertainty as the reflecting layer

dims out.
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6.3. Simple single-trace fluid detection problem

In this simple test a slab of soft sand surrounded by

shale layers has oil present, and the prior model is set to

be uninformative with respect to fluid type (so the

reservoir has 50% prior chance of brine, 50% oil). The

rest of the story is told in the caption of Fig. 7. In

summary, the inverter will detect fluid contrasts reliably

if the signal quality is sufficient, the rocks sufficiently

‘‘soft’’ and porous, and the wavelet well calibrated.

6.4. Field example

We expect in the near future to publish several

extended papers focussed on the inversion of some real
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Well Result
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ir layer. (c) Traces computed from models drawn from posterior

ram of reservoir thickness drawn from prior model and after

bviously precluded. Posterior distribution of thickness is also
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field data using Delivery and the workflow of developing

the prior. For the moment, we will confine our

discussion to a simple test for an actual field, shown in

Fig. 8. This is a ‘test’ inversion at the well location. An 8-

layer model for a set of stacked turbidite sands has been

built with proven hydrocarbons in the second-bottom

layer. The sands are quite clean and have high porosities

ðE30%Þ; so the effects of Gassman substitution are very

strong in the reservoir layers. The layers are constructed

from log analysis, but their boundaries are set to have a

broad prior uncertainty around the 10–15 ms range.

Low net-to-gross layers ðNGo0:1Þ are often set as pure

shales ðNG ¼ 0Þ to gkeep the model dimensionality

down. The prior for fluid type (brine:oil) is set as 50:50,

as in the previous example.

The inversion at the well location not only confirms

the presence of oil (> 80% probability) but also

demonstrates that the posterior distribution of layer

thickness for the reservoir is consistent with the well

observation.
7. Conclusions

We have introduced a new open-source tool for

model-based Bayesian seismic inversion called Delivery.

The inverter combines prior knowledge of the reservoir

model with information from the seismic data to yield a

posterior uncertainty distribution for the reservoir

model, which is sampled to produce a suite of stochastic

inversions. The Monte Carlo samples produced by the

inverter summarise the full state of knowledge about the

reservoir model after incorporating the seismic data, and

can be used to generate predictive distributions of most

commercial or engineering quantities of interest (net-

pay, column-thickness, etc.).

The inverter is driven from a combination of XML

files and SU/BHP SU data, and outputs are in SU/

BHP SU form. The SU backbone means the inverter

interfaces nicely with other free seismic software, such as

the INT viewer INT, 20035 and BHP’s SU extensions

Miller and Glinsky, 2003.6 We believe the ‘‘small-is-

beautiful’’ philosophy associated with backbone designs

improves the flexibility and maintainability of the

software.

The authors hope that this tool will prove useful to

reservoir modellers working with the problem of seismic

data integration, and encourage users to help improve

the software or submit suggestions for improvements.

We hope that the newer ideas on probabilistic model-

comparison and sampling (vis-à-vis the petroleum
5 INT, 2003. BHP viewer from INT, see link at http://

timna.mines.edu/cwpcodes.
6Miller, R., Glinsky, M., 2003. BHP SU: BHP extensions to

Seismic Unix, see link at http://timna.mines.edu/cwpcodes.
community) prove useful and applicable to related

problems in uncertainty and risk management.
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